SHARP UPPER BOUNDS FOR GENERALIZED EDGE-CONNECTIVITY OF PRODUCT GRAPHS

被引:7
|
作者
Sun, Yuefang [1 ]
机构
[1] Shaoxing Univ, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized edge-connectivity; Cartesian product; strong product; lexicographic product; 3-EDGE-CONNECTIVITY; 3-CONNECTIVITY; TREES;
D O I
10.7151/dmgt.1924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized k-connectivity K-k(G) of a graph G was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as lambda(k)(G) = min{lambda(S) : S subset of V(G) and vertical bar S vertical bar = k}, where lambda(S) denote the maximum number l of pairwise edge-disjoint trees T-1,T-2,...,T-l in G such that S subset of V(T-i) for 1 <= i <= l. In this paper, we study the generalized edge connectivity of product graphs and obtain sharp upper bounds for the generalized 3-edge-connectivity of Cartesian product graphs and strong product graphs. Among our results, some special cases are also discussed.
引用
收藏
页码:833 / 843
页数:11
相关论文
共 50 条
  • [21] PATHS AND EDGE-CONNECTIVITY IN GRAPHS
    OKAMURA, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (02) : 151 - 172
  • [22] ON CONDITIONAL EDGE-CONNECTIVITY OF GRAPHS
    徐俊明
    Acta Mathematicae Applicatae Sinica(English Series), 2000, (04) : 414 - 419
  • [23] On conditional edge-connectivity of graphs
    Xu Junming
    Acta Mathematicae Applicatae Sinica, 2000, 16 (4) : 414 - 419
  • [24] The Edge-Connectivity of Token Graphs
    J. Leaños
    Christophe Ndjatchi
    Graphs and Combinatorics, 2021, 37 : 1013 - 1023
  • [25] On the path edge-connectivity of graphs
    Zhang, Shumin
    ARS COMBINATORIA, 2017, 135 : 51 - 69
  • [26] The Edge-Connectivity of Token Graphs
    Leanos, J.
    Ndjatchi, Christophe
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 1013 - 1023
  • [27] ON EDGE-CONNECTIVITY OF INSERTED GRAPHS
    Adhikari, M. R.
    Pramanik, L. K.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2006, 51 (01): : 3 - 9
  • [28] On restricted edge-connectivity of graphs
    Xu , JM
    Xu, KL
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 291 - 298
  • [29] Edge connectivity and super edge-connectivity of jump graphs
    Chen, Xing
    Liu, Juan
    Xie, Dongyang
    Meng, Jixiang
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (02): : 233 - 246
  • [30] Game edge-connectivity of graphs
    Matsumoto, Naoki
    Nakamigawa, Tomoki
    DISCRETE APPLIED MATHEMATICS, 2021, 298 : 155 - 164