Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion

被引:40
|
作者
Fuente-Cuesta, A. [1 ]
Diaz-Somoano, M. [1 ]
Lopez-Anton, M. A. [1 ]
Cieplik, M. [2 ]
Fierro, J. L. G. [3 ]
Martinez-Tarazona, M. R. [1 ]
机构
[1] Inst Nacl Carbon CSIC, Oviedo 33011, Spain
[2] Energy Res Ctr Netherlands, NL-1755 ZG Petten, Netherlands
[3] Inst Catalisis & Petr Quim CSIC, Madrid 28049, Spain
关键词
Mercury; Coal combustion; Char; Biomass; ACTIVATED CARBON; ADSORPTION;
D O I
10.1016/j.jenvman.2011.12.013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 28
页数:6
相关论文
共 50 条
  • [22] Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas
    Yang, Jianping
    Li, Qin
    Zhu, Wenbing
    Qu, Wenqi
    Li, Min
    Xu, Zhengyong
    Yang, Zequn
    Liu, Hui
    Li, Hailong
    FUEL, 2021, 290
  • [23] Mercury removal from coal combustion flue gas by modified fly ash
    Wenqing Xu
    Hairui Wang
    Tingyu Zhu
    Junyan Kuang
    Pengfei Jing
    Journal of Environmental Sciences, 2013, 25 (02) : 393 - 398
  • [24] The kinetic mechanism of mercury oxidation in coal combustion flue gas
    School of Energy and Environment, Zhongyuan College of Technology, Zhengzhou 450007, China
    不详
    Dongli Gongcheng, 2007, 6 (975-979):
  • [25] Catalyst aging in a coal combustion flue gas for mercury oxidation
    Kamata, Hiroyuki
    Yukimura, Akinori
    FUEL PROCESSING TECHNOLOGY, 2012, 104 : 295 - 299
  • [26] Development of a mercury transformation model in coal combustion flue gas
    Zhuang, Y
    Thompson, JS
    Zygarlicke, CJ
    Pavlish, JH
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (21) : 5803 - 5808
  • [27] Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas
    Yang, Qin
    Yang, Zequn
    Li, Hailong
    Zhao, Jiexia
    Yang, Jianping
    Qu, Wenqi
    Shih, Kaimin
    CHEMICAL ENGINEERING JOURNAL, 2020, 398
  • [28] Application of Gas Chromatography in the Study of Steam Gasification and Co-Gasification of Hard Coal and Biomass Chars
    Smolinski, A.
    Howaniec, N.
    ACTA CHROMATOGRAPHICA, 2013, 25 (02) : 317 - 330
  • [29] Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas
    Gazda-Grzywacz, Magdalena
    Winconek, Lukasz
    Burmistrz, Piotr
    ENERGIES, 2021, 14 (13)
  • [30] Study of mercury speciation from simulated coal gasification
    Lu, DY
    Granatstein, DL
    Rose, DJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (17) : 5400 - 5404