Dual resonance excitation system for the contact mode of atomic force microscopy

被引:12
|
作者
Kopycinska-Mueller, M. [1 ,2 ]
Striegler, A. [1 ,2 ]
Schlegel, R. [2 ]
Kuzeyeva, N. [1 ]
Koehler, B. [2 ]
Wolter, K. -J. [1 ]
机构
[1] Tech Univ Dresden, Fac Elect Engn & Informat Technol, D-01069 Dresden, Germany
[2] Fraunhofer Inst Nondestruct Testing, Branch Dresden, D-01109 Dresden, Germany
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2012年 / 83卷 / 04期
关键词
ACOUSTIC MICROSCOPY; STIFFNESS;
D O I
10.1063/1.3702799
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose an improved system that enables simultaneous excitation and measurements of at least two resonance frequency spectra of a vibrating atomic force microscopy (AFM) cantilever. With the dual resonance excitation system it is not only possible to excite the cantilever vibrations in different frequency ranges but also to control the excitation amplitude for the individual modes. This system can be used to excite the resonance frequencies of a cantilever that is either free of the tip-sample interactions or engaged in contact with the sample surface. The atomic force acoustic microscopy and principally similar methods utilize resonance frequencies of the AFM cantilever vibrating while in contact with the sample surface to determine its local elastic modulus. As such calculation demands values of at least two resonance frequencies, two or three subsequent measurements of the contact resonance spectra are necessary. Our approach shortens the measurement time by a factor of two and limits the influence of the AFM tip wear on the values of the tip-sample contact stiffness. In addition, it allows for in situ observation of processes transpiring within the AFM tip or the sample during non-elastic interaction, such as tip fracture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702799]
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [31] Velocity dependent friction laws in contact mode atomic force microscopy
    Stark, RW
    Schitter, G
    Stemmer, A
    ULTRAMICROSCOPY, 2004, 100 (3-4) : 309 - 317
  • [32] Analysis of PI-Control for Atomic Force Microscopy in Contact Mode
    Messineo, Saverio
    Ragazzon, Michael R. P.
    Busnelli, Fabio
    Gravdahl, Jan Tommy
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (04) : 1681 - 1695
  • [33] Characterization of intermittent contact in tapping-mode atomic force microscopy
    Zhao, Xiaopeng
    Dankowicz, Harry
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (02): : 109 - 115
  • [34] High-resolution nanophotolithography in atomic force microscopy contact mode
    Gilbert, Y
    Fikri, R
    Ruymantseva, A
    Lerondel, G
    Bachelot, R
    Barchiesi, D
    Royer, P
    MACROMOLECULES, 2004, 37 (10) : 3780 - 3791
  • [36] Optical sensing limits in contact and bending mode atomic force microscopy
    Ng, T. W.
    Thirunavukkarasu, S.
    EXPERIMENTAL MECHANICS, 2007, 47 (06) : 841 - 844
  • [37] Manipulation of carbon nanotube bundles with contact mode atomic force microscopy
    Shen, ZY
    Liu, SJ
    Hou, SM
    Xue, ZQ
    Gu, ZN
    ASIANANO 2002, PROCEEDINGS, 2003, : 201 - 205
  • [38] Contact resonance atomic force microscopy using long elastic tips
    Zimron-Politi, Nadav
    Tung, Ryan C.
    NANOTECHNOLOGY, 2024, 35 (07)
  • [39] Scanning speed phenomenon in contact-resonance atomic force microscopy
    Glover, Christopher C.
    Killgore, Jason P.
    Tung, Ryan C.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 945 - 952
  • [40] Contact Resonance Atomic Force Microscopy Using Long, Massive Tips
    Jaquez-Moreno, Tony
    Aureli, Matteo
    Tung, Ryan C.
    SENSORS, 2019, 19 (22)