Isofrequency pairing of spinning particles in Schwarzschild-de Sitter spacetime

被引:8
|
作者
Kunst, Daniela [1 ]
Perlick, Volker [1 ]
Laemmerzahl, Claus [1 ,2 ]
机构
[1] Univ Bremen, ZARM, D-28359 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 02期
关键词
GENERAL-RELATIVITY; EXTENDED BODIES; CIRCULAR ORBITS; BLACK-HOLE; KERR FIELD; DYNAMICS; MOTION;
D O I
10.1103/PhysRevD.92.024029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It has been established in Schwarzschild spacetime (and more generally in Kerr spacetime) that pairs of geometrically different timelike geodesics with the same radial and azimuthal frequencies exist in the strong-field regime. The occurrence of this so-called isofrequency pairing is of relevance in view of gravitational-wave observations. In this paper we generalize the results on isofrequency pairing in two directions. Firstly, we allow for a (positive) cosmological constant, i.e., we replace the Schwarzschild spacetime with the Schwarzschild-de Sitter spacetime. Secondly, we consider not only spinless test particles (i.e., timelike geodesics) but also test particles with spin. In the latter case we restrict to the case that the motion is in the equatorial plane with the spin perpendicular to this plane. We find that the cosmological constant as well as the spin have distinct impacts on the description of bound motion in the frequency domain.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Greybody factors for nonminimally coupled scalar fields in Schwarzschild-de Sitter spacetime
    Crispino, Luis C. B.
    Higuchi, Atsushi
    Oliveira, Ednilton S.
    Rocha, Jorge V.
    [J]. PHYSICAL REVIEW D, 2013, 87 (10)
  • [42] Newtonian analogue of Schwarzschild-de Sitter spacetime: Influence on the local kinematics in galaxies
    Sarkar, Tamal
    Ghosh, Shubhrangshu
    Bhadra, Arunava
    [J]. PHYSICAL REVIEW D, 2014, 90 (06)
  • [43] Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime
    Garattini, R
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (04) : 571 - 592
  • [44] Semi-Analytical Solution of Dirac Equation in Schwarzschild-de Sitter Spacetime
    Y. Lyu
    Y.-X. Gui
    [J]. International Journal of Theoretical Physics, 2007, 46 : 1596 - 1616
  • [45] Horizons and correlation functions in 2D Schwarzschild-de Sitter spacetime
    Anderson, Paul R.
    Traschen, Jennie
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [46] Classical tests of general relativity in the Newtonian limit of the Schwarzschild-de Sitter spacetime
    Miraghaei, H.
    Nouri-Zonoz, M.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (12) : 2947 - 2956
  • [47] Spinning particles in Schwarzschild–de Sitter space–time
    M. Mortazavimanesh
    Morteza Mohseni
    [J]. General Relativity and Gravitation, 2009, 41 : 2697 - 2706
  • [48] AN INTERNAL SCHWARZSCHILD-DE SITTER SOLUTION?
    Nazari, Borzoo
    [J]. QUANTUM MECHANICS, ELEMENTARY PARTICLES, QUANTUM COSMOLOGY AND COMPLEXITY, 2011, : 591 - 596
  • [49] On the Schwarzschild-de Sitter metric of nonlocal de Sitter gravity
    Dimitrijevic, Ivan
    Dragovich, Branko
    Rakic, Zoran
    Stankovic, Jelena
    [J]. FILOMAT, 2023, 37 (25) : 8641 - 8650
  • [50] Quantum deformations of Schwarzschild and Schwarzschild-de Sitter spacetimes
    Wang, Ding
    Zhang, R. B.
    Zhang, Xiao
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (08)