Uncertainty in Clinical Endpoints: Information and Retrieval

被引:0
|
作者
Wang, Hongwei [1 ]
Chen, Cong [2 ]
Snapinn, Steven M. [3 ]
机构
[1] Merck Res Labs, Rahway, NJ 07065 USA
[2] Merck Res Labs, N Wales, PA 19454 USA
[3] Amgen Inc, Global Biostat & Epidemiol, Thousand Oaks, CA 91320 USA
来源
关键词
Cardiovascular; Endpoint adjudication; Oncology; Poisson process; Weighted Cox regression;
D O I
10.1198/sbr.2009.0043
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clinical endpoints such as stroke in cardiovascular trials or disease progression in oncology trials are often assessed with uncertainty. The conventional approach is to classify each potential endpoint as true or false by an endpoint adjudication committee via a voting procedure, and only include the first confirmed endpoint with a majority of votes for each patient in Cox regression analysis. To retrieve this uncertainty information, Snapinn (1998) proposed a weighted Cox regression model and showed substantial gain in power over the conventional approach. In this research note, we try to complement this work by (1) demonstrating the impact of adjudication on the conventional approach; and (2) providing a theoretical explanation for why the weighted method works better.
引用
收藏
页码:362 / 365
页数:4
相关论文
共 50 条
  • [21] Inverse problems of gravimetry as retrieval of reliable information under uncertainty
    P. I. Balk
    A. S. Dolgal
    Izvestiya, Physics of the Solid Earth, 2012, 48 : 441 - 455
  • [22] Clinical entity augmented retrieval for clinical information extraction
    Lopez, Ivan
    Swaminathan, Akshay
    Vedula, Karthik
    Narayanan, Sanjana
    Haredasht, Fateme Nateghi
    Ma, Stephen P.
    Liang, April S.
    Tate, Steven
    Maddali, Manoj
    Gallo, Robert Joseph
    Shah, Nigam H.
    Chen, Jonathan H.
    NPJ DIGITAL MEDICINE, 2025, 8 (01):
  • [23] A PHYSICIAN ORIENTED METHOD FOR CLINICAL INFORMATION RETRIEVAL
    SMITH, MJ
    LEVY, RP
    AMERICAN DOCUMENTATION, 1968, 19 (01): : 90 - &
  • [24] Assessing pharmacists' competence in clinical information retrieval
    Martin, AE
    Stumpf, JL
    Ryan, ML
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 1996, 53 (24) : 2957 - 2958
  • [25] INFORMATION RETRIEVAL IN CLINICAL FREE TEXT DOCUMENTS
    Spat, S.
    Cadonna, B.
    Rakovac, I
    Guetl, C.
    Leitner, H.
    Stark, G.
    Beck, P.
    EHEALTH2008 - MEDICAL INFORMATICS MEETS EHEALTH, 2008, : 205 - 210
  • [26] CLINICAL PHYSICS INFORMATION-RETRIEVAL SYSTEM
    ZUSAG, TW
    CHUNGBIN, A
    MEDICAL PHYSICS, 1982, 9 (04) : 611 - 611
  • [27] Exploiting Semantics for Improving Clinical Information Retrieval
    Babashzadeh, Atanaz
    Huang, Jimmy
    Daoud, Mariam
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 801 - 804
  • [28] Clinical endpoints
    Conti, CR
    CLINICAL CARDIOLOGY, 2002, 25 (07) : 311 - 312
  • [29] Defining information fractions in group sequential clinical trials with multiple endpoints
    Xu, Tu
    Qin, Qin
    Wang, Xin
    CONTEMPORARY CLINICAL TRIALS COMMUNICATIONS, 2018, 10 : 77 - 79
  • [30] A model of uncertainty and its relation to information seeking and retrieval (IS&R)
    Chowdhury, Sudatta
    Gibb, Forbes
    Landoni, Monica
    JOURNAL OF DOCUMENTATION, 2014, 70 (04) : 575 - 604