Uncertainty in Clinical Endpoints: Information and Retrieval

被引:0
|
作者
Wang, Hongwei [1 ]
Chen, Cong [2 ]
Snapinn, Steven M. [3 ]
机构
[1] Merck Res Labs, Rahway, NJ 07065 USA
[2] Merck Res Labs, N Wales, PA 19454 USA
[3] Amgen Inc, Global Biostat & Epidemiol, Thousand Oaks, CA 91320 USA
来源
关键词
Cardiovascular; Endpoint adjudication; Oncology; Poisson process; Weighted Cox regression;
D O I
10.1198/sbr.2009.0043
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clinical endpoints such as stroke in cardiovascular trials or disease progression in oncology trials are often assessed with uncertainty. The conventional approach is to classify each potential endpoint as true or false by an endpoint adjudication committee via a voting procedure, and only include the first confirmed endpoint with a majority of votes for each patient in Cox regression analysis. To retrieve this uncertainty information, Snapinn (1998) proposed a weighted Cox regression model and showed substantial gain in power over the conventional approach. In this research note, we try to complement this work by (1) demonstrating the impact of adjudication on the conventional approach; and (2) providing a theoretical explanation for why the weighted method works better.
引用
收藏
页码:362 / 365
页数:4
相关论文
共 50 条
  • [1] On the Uncertainty of Information Retrieval in Associative Memories
    Yaakobi, Eitan
    Bruck, Jehoshua
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 106 - 110
  • [2] Codes for Information Retrieval With Small Uncertainty
    Junnila, Ville
    Laihonen, Tero
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 976 - 985
  • [3] On the Uncertainty of Information Retrieval in Associative Memories
    Yaakobi, Eitan
    Bruck, Jehoshua
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2155 - 2165
  • [4] Modeling uncertainty in bibliometrics and information retrieval: an information fusion approach
    Alexander Karlsson
    Björn Hammarfelt
    H. Joe Steinhauer
    Göran Falkman
    Nasrine Olson
    Gustaf Nelhans
    Jan Nolin
    Scientometrics, 2015, 102 : 2255 - 2274
  • [5] Modeling uncertainty in bibliometrics and information retrieval: an information fusion approach
    Karlsson, Alexander
    Hammarfelt, Bjorn
    Steinhauer, H. Joe
    Falkman, Goran
    Olson, Nasrine
    Nelhans, Gustaf
    Nolin, Jan
    SCIENTOMETRICS, 2015, 102 (03) : 2255 - 2274
  • [6] Fuzzy information systems: managing uncertainty in databases and information retrieval systems
    Kraft, DH
    Petry, FE
    FUZZY SETS AND SYSTEMS, 1997, 90 (02) : 183 - 191
  • [7] Improving the information content of categorical clinical trial endpoints
    Berger, VW
    CONTROLLED CLINICAL TRIALS, 2002, 23 (05): : 502 - 514
  • [8] Estimating Measurement Uncertainty for Information Retrieval Effectiveness Metrics
    Moffat, Alistair
    Scholer, Falk
    Yang, Ziying
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2018, 10 (03):
  • [9] Comparison of Uncertainty Representations for Missing Data in Information Retrieval
    Jousselme, Anne-Laure
    Maupin, Patrick
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1902 - 1909
  • [10] Uncertainty in information seeking and retrieval: A study in an academic environment
    Chowdhury, Sudatta
    Gibb, Forbes
    Landoni, Monica
    INFORMATION PROCESSING & MANAGEMENT, 2011, 47 (02) : 157 - 175