The Role of Himawari Rainfall Data for Indonesia Fire Danger Rating System (Ina-FDRS)

被引:0
|
作者
Sulistyowati, Reni [1 ]
Vianti, Evie A. [1 ]
Panjaitan, Andersen L. [2 ]
Darmawan, Arief [1 ]
Sumargana, Lena [1 ]
机构
[1] Agcy Assessment & Applicat Technol BPPT, MH Thamrin 8, Cent Jakarta, Indonesia
[2] Meteorol Climatol & Geophys Agcy BMKG, Angkasa 1 2, Kemayoran, Central Jakarta, Indonesia
关键词
HIMAWARI; Satellite Remote Sensing; Rainfall Data; Peat land; Forest Fire;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The 2015 fire period and 2018 non-fire period in South Sumatera, Indonesia, will be studied by using satellite rainfall data from HIMAWARI-8 AHI. The rainfall data from satellite remote sensing and surface meteorological data will be used as an input for Canadian Forest Fire Weather Index System and compare during those two different seasons. In this study, the satellite rainfall data will be applied to the peat land area at South Sumatera Province. During 2015, rainfall conditions less than 3 mm/day and South Sumatera's condition very dry compare with the conditions on 2018.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 49 条
  • [41] A case-study of wildland fire management knowledge exchange: the barriers and facilitators in the development and integration of the Canadian Forest Fire Danger Rating System in Ontario, Canada
    McFayden, Colin B.
    George, Colleen
    Johnston, Lynn M.
    Wotton, Mike
    Johnston, Daniel
    Sloane, Meghan
    Johnston, Joshua M.
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2022, 31 (09) : 835 - 846
  • [42] An Advanced Forest Fire Danger Forecasting System: Integration of Remote Sensing and Historical Sources of Ignition Data
    Abdollahi, Masoud
    Islam, Tanvir
    Gupta, Anil
    Hassan, Quazi K.
    REMOTE SENSING, 2018, 10 (06)
  • [43] Modernizing the US National Fire Danger Rating System (version 4): Simplified fuel models and improved live and dead fuel moisture calculations
    Jolly, W. Matt
    Freeborn, Patrick H.
    Bradshaw, Larry S.
    Wallace, Jon
    Brittain, Stuart
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 181
  • [44] Estimating Spatially Varying Severity Thresholds of a Forest Fire Danger Rating System Using Max-Stable Extreme-Event Modeling
    Stephenson, Alec G.
    Shaby, Benjamin A.
    Reich, Brian J.
    Sullivan, Andrew L.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2015, 54 (02) : 395 - 407
  • [45] Visibility Estimation Due To Forest Fire Smoke Using Backward Elimination Multiple Regression of Himawari_8 Satellite Data over Sumatera and Borneo Island Indonesia
    Ismanto, H.
    Hartono, H.
    Marfai, M. A.
    3RD ENVIRONMENTAL RESOURCES MANAGEMENT IN GLOBAL REGION, 2020, 451
  • [46] Better bushfire safety decision-making: Making sense of complexities and challenges surrounding 'Stay or Go' and the Australian Fire Danger Rating System
    Dwyer, Graham
    Schauble, John
    AUSTRALIAN JOURNAL OF PUBLIC ADMINISTRATION, 2023,
  • [47] Development of a New Daily-Scale Forest Fire Danger Forecasting System Using Remote Sensing Data
    Chowdhury, Ehsan H.
    Hassan, Quazi K.
    REMOTE SENSING, 2015, 7 (03): : 2431 - 2448
  • [48] Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: model evaluation and comparison with National Fire Danger Rating System algorithms
    Carlson, J. D.
    Bradshaw, Larry S.
    Nelson, Ralph M., Jr.
    Bensch, Randall R.
    Jabrzemski, Rafal
    INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2007, 16 (02) : 204 - 216
  • [49] Predicting moisture dynamics of fine understory fuels in a moist tropical rainforest system: results of a pilot study undertaken to identify proxy variables useful for rating fire danger
    Ray, David
    Nepstad, Dan
    Brando, Paulo
    NEW PHYTOLOGIST, 2010, 187 (03) : 720 - 732