Nonparametric Prediction Intervals Based on Ranked Set Samples

被引:5
|
作者
Vock, Michael [1 ]
Balakrishnan, N. [2 ,3 ]
机构
[1] Univ Bern, Inst Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[3] Natl Cent Univ, Taipei, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized ranked set sample; Judgement error ranking; Nonparametric prediction interval; Ranked set sample; Ranking error;
D O I
10.1080/03610926.2011.560738
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we develop nonparametric prediction intervals based on generalized ranked set samples using conditional as well as unconditional approaches. The predictions are developed for order statistics from a future sample as well as for order statistics from a future balanced ranked set sample. The effects of ranking errors on the coverage probabilities of these prediction intervals are also examined.
引用
收藏
页码:2256 / 2268
页数:13
相关论文
共 50 条
  • [21] Bayesian nonparametric models for ranked set sampling
    Gemayel, Nader
    Stasny, Elizabeth A.
    Wolfe, Douglas A.
    LIFETIME DATA ANALYSIS, 2015, 21 (02) : 315 - 329
  • [22] Bayesian nonparametric models for ranked set sampling
    Nader Gemayel
    Elizabeth A. Stasny
    Douglas A. Wolfe
    Lifetime Data Analysis, 2015, 21 : 315 - 329
  • [23] Nonparametric prediction intervals for future record intervals based on order statistics
    Ahmadi, Jafar
    MirMostafaee, S. M. T. K.
    Balakrishnan, N.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) : 1663 - 1672
  • [24] Exact two-sample nonparametric test for quantile difference between two populations based on ranked set samples
    Omer Ozturk
    N. Balakrishnan
    Annals of the Institute of Statistical Mathematics, 2009, 61 : 235 - 249
  • [25] Exact two-sample nonparametric test for quantile difference between two populations based on ranked set samples
    Ozturk, Omer
    Balakrishnan, N.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (01) : 235 - 249
  • [26] Confidence Intervals for Quantiles in Ranked Set Sampling
    M. Mahdizadeh
    Ehsan Zamanzade
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 3017 - 3028
  • [27] Confidence Intervals for Quantiles in Ranked Set Sampling
    Mahdizadeh, M.
    Zamanzade, Ehsan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 3017 - 3028
  • [28] PREDICTION INTERVALS FOR CHARACTERISTICS OF FUTURE NORMAL SAMPLE UNDER MOVING RANKED SET SAMPLING
    Al-Rawwash, M.
    Alodat, M. T.
    Aludaat, K. M.
    Odat, N.
    Muhaidat, R.
    STATISTICA, 2010, 70 (02) : 137 - 152
  • [29] Modified maximum likelihood estimators based on ranked set samples
    Zheng, G
    Al-Saleh, MF
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (03) : 641 - 658
  • [30] On the Kaplan-Meier estimator based on ranked set samples
    Strzalkowska-Kominiak, E.
    Mahdizadeh, M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (12) : 2577 - 2591