Grain Refinement Kinetics in a Low Alloyed Cu-Cr-Zr Alloy Subjected to Large Strain Deformation

被引:22
|
作者
Morozova, Anna [1 ]
Borodin, Elijah [2 ]
Bratov, Vladimir [2 ,3 ]
Zherebtsov, Sergey [4 ]
Belyakov, Andrey [1 ]
Kaibyshev, Rustam [1 ]
机构
[1] Belgorod State Univ, Lab Mech Properties Nanostruct Mat & Superalloys, Belgorod 308015, Russia
[2] RAS, Inst Problems Mech Engn, St Petersburg 199178, Russia
[3] St Petersburg State Univ, Dept Elast, St Petersburg 199034, Russia
[4] Belgorod State Univ, Lab Bulk Nanostruct Mat, Belgorod 308015, Russia
来源
MATERIALS | 2017年 / 10卷 / 12期
关键词
Cu-Cr-Zr alloy; grain refinement; severe plastic deformation; triple junctions; grain refinement kinetics; HIGH-PRESSURE TORSION; SEVERE PLASTIC-DEFORMATION; ELECTRICAL-CONDUCTIVITY; DYNAMIC RECRYSTALLIZATION; STRENGTHENING MECHANISMS; CONTINUOUS EXTRUSION; COPPER; MICROSTRUCTURE; EVOLUTION; AL;
D O I
10.3390/ma10121394
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu-0.1Cr-0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route B-C. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson-Mehl-Avrami-Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu-0.1Cr-0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Microstructure and Bending Properties of Cu-Cr-Zr Alloy Subjected to Heat Treatment and Rolling
    Jiazhi Li
    Hua Ding
    Weilin Gao
    Li Wang
    Journal of Materials Engineering and Performance, 2021, 30 : 5825 - 5833
  • [22] Microstructure and Bending Properties of Cu-Cr-Zr Alloy Subjected to Heat Treatment and Rolling
    Li, Jiazhi
    Ding, Hua
    Gao, Weilin
    Wang, Li
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (08) : 5825 - 5833
  • [23] Comparative analysis of the aging kinetics in low-alloyed Cu-Cr-Hf and Cu-Cr-Zr alloys after high pressure torsion
    Rybalchenko, O. V.
    Bochvar, N. R.
    Rybalchenko, G. V.
    Martynenko, N. S.
    Tabachkova, N. Yu.
    Dobatkin, S. V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 955
  • [24] Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy
    Purcek, G.
    Yanar, H.
    Shangina, D. V.
    Demirtas, M.
    Bochvar, N. R.
    Dobatkin, S. V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 742 : 325 - 333
  • [25] Regularities of Microstructure Evolution in a Cu-Cr-Zr Alloy during Severe Plastic Deformation
    Bodyakova, Anna
    Tkachev, Maksim
    Raab, Georgy, I
    Kaibyshev, Rustam
    Belyakov, Andrey N.
    MATERIALS, 2022, 15 (16)
  • [26] Recrystallization and Precipitation Behavior of Cu-Cr-Zr Alloy
    J.H. Su
    P. Liu
    Q.M. Dong
    H.J. Li
    F.Z. Ren
    B.H. Tian
    Journal of Materials Engineering and Performance, 2007, 16 : 490 - 493
  • [27] Dynamics of phase transformation in Cu-Cr-Zr alloy
    Peng, Lijun
    Xie, Haofeng
    Huang, Guojie
    Yang, Zhen
    Mi, Xujun
    Xiong, Baiqing
    ADVANCES IN MATERIALS AND MATERIALS PROCESSING IV, PTS 1 AND 2, 2014, 887-888 : 333 - 337
  • [28] Microstructure and properties of aging Cu-Cr-Zr alloy
    Wang, Kun
    Liu, Ke-Fu
    Zhang, Jing-Bo
    RARE METALS, 2014, 33 (02) : 134 - 138
  • [29] Study on electroslag remelting of Cu-Cr-Zr alloy
    Wei, JH
    Shen, XY
    METALL, 2000, 54 (04): : 196 - 200
  • [30] On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP
    Abib, Khadidja
    Munoz Balanos, Jairo Alberto
    Alili, Baya
    Bradai, Djamel
    MATERIALS CHARACTERIZATION, 2016, 112 : 252 - 258