Quantum-confined and pseudo Stark effects in the semiconductor conical quantum dot

被引:0
|
作者
Dvoyan, K. G. [1 ]
Tshantshapanyan, A. A. [1 ]
Vlahovic, B. [1 ]
Salamo, G. J. [2 ]
机构
[1] North Carolina Cent Univ, Dept Math & Phys, 1801 Fayetteville St, Durham, NC 27707 USA
[2] Univ Arkansas, Inst Nanoscale Mat Sci & Engn, Fayetteville, AR 72701 USA
来源
NANOPHOTONIC MATERIALS XIV | 2017年 / 10344卷
基金
美国国家科学基金会;
关键词
conical quantum dot; quantum-confined Stark effect; pseudo-Stark effect; adiabatic approximation; variational method; perturbation theory; OBLATE; STATES;
D O I
10.1117/12.2274688
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electronic states in a GaAs conical quantum dot (QD) are theoretically investigated within the framework of the geometric adiabatic approximation both in the strong and weak quantum confinement regimes. For the lower levels of the spectrum, the localization of the electron in the vicinity of the QD center-of-gravity is proved. The QD conical symmetry leads to the appearance of an atypical linear term in the effective confining potential. The influence of a uniform electric field on the system is also considered, and both the quantum-confined and pseudo- Stark effects are discussed. The possibility of the quasi-continuous spectrum implementation in the system is revealed in the presence of an electric field. For the weak quantum confinement regime, the motion of the exciton's center-of-gravity is quantized, which leads to the appearance of additional Coulomb sub-levels.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] THE QUANTUM-CONFINED STARK-EFFECT IN SHALLOW QUANTUM-WELLS
    GIBB, K
    LACELLE, C
    SUN, Q
    FORTIN, E
    ROTH, AP
    CANADIAN JOURNAL OF PHYSICS, 1991, 69 (3-4) : 447 - 450
  • [32] Inverse parabolic quantum well and its quantum-confined Stark effect
    1600, American Inst of Physics, Woodbury, NY, USA (74):
  • [33] QUANTUM-CONFINED STARK SHIFT FOR DIFFERENTLY SHAPED QUANTUM-WELLS
    CHEN, WQ
    ANDERSSON, TG
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1992, 7 (06) : 828 - 836
  • [34] Quantum-confined stark effect in single CdSe nanocrystallite quantum dots
    Empedocles, SA
    Bawendi, MG
    SCIENCE, 1997, 278 (5346) : 2114 - 2117
  • [35] The influence of the quantum-confined Stark effect on InGaN/AlGaN quantum dots
    Zakizade, E.
    Figge, S.
    Laurus, C.
    Mehrtens, T.
    Rosenauer, A.
    Hommel, D.
    Gutowski, J.
    Sebald, K.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (05):
  • [36] Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined stark effect and electroabsorption
    S. Yu. Kruchinin
    A. V. Fedorov
    Physics of the Solid State, 2007, 49 : 968 - 975
  • [37] Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined stark effect and electroabsorption
    Kruchinin, S. Yu.
    Fedorov, A. V.
    PHYSICS OF THE SOLID STATE, 2007, 49 (05) : 968 - 975
  • [38] Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [39] Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    ACS NANO, 2012, 6 (11) : 10013 - 10023
  • [40] Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature
    Park, KyoungWon
    Deutsch, Zvicka
    Li, J. Jack
    Oron, Dan
    Weiss, Shimon
    COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VIII, 2013, 8595