Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit

被引:45
|
作者
Parker, Joseph T. [1 ]
Dellar, Paul J. [1 ]
机构
[1] Univ Oxford, OCIAM, Math Inst, Radcliffe Observ Quarter, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
FOKKER-PLANCK SYSTEM; ASTROPHYSICAL GYROKINETICS; PLASMA-OSCILLATIONS; NUMERICAL-SOLUTION; TIME BEHAVIOR; EQUATIONS; SIMULATIONS; DISSIPATION; TURBULENCE; FLUID;
D O I
10.1017/S0022377814001287
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study Landau damping in the 1+1D Vlasov-Poisson system using a FourierHermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards and backwards propagating Hermite modes recently developed for gyrokinetic theory. We derive a free energy equation that relates the change in the electric field to the net Hermite flux out of the zeroth Hermite mode. In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes; in nonlinear damping, the initial decay is followed by a growth phase characterized by the generation of backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards propagating modes increases exponentially until balancing that of the forward propagating modes. Thereafter there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code SPECTROGK, modified to solve the 1+1D Vlasov-Poisson system. This captures Landau damping via Hou-Li filtering in velocity space. Therefore the code is applicable even in regimes where phase mixing and filamentation are dominant.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] The mean field limit for the Vlasov-Poisson system with a point charge
    Lin, Meihui
    Zhang, Xianwen
    APPLICABLE ANALYSIS, 2024,
  • [22] On the controllability of the Vlasov-Poisson system
    Glass, O
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) : 332 - 379
  • [23] On the Relativistic Vlasov-Poisson System
    Kiessling, M. K. -H.
    Tahvildar-Zadeh, A. S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) : 3177 - 3207
  • [24] Collisional effects on the numerical recurrence in Vlasov-Poisson simulations
    Pezzi, Oreste
    Camporeale, Enrico
    Valentini, Francesco
    PHYSICS OF PLASMAS, 2016, 23 (02)
  • [25] FOURIER-HERMITE DESCRIPTION OF ONE-DIMENSIONAL VLASOV TURBULENCE
    CROWNFIELD, FR
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 757 - 757
  • [26] THE VLASOV-POISSON-LANDAU SYSTEM IN THE WEAKLY COLLISIONAL REGIME
    Chaturvedi, Sanchit
    Luk, Jonathan
    Nguyen, Toan T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (04) : 1103 - 1189
  • [27] Conservative closures of the Vlasov-Poisson equations based on symmetrically weighted Hermite spectral expansion
    Issan, Opal
    Koshkarov, Oleksandr
    Halpern, Federico D.
    Kramer, Boris
    Delzanno, Gian Luca
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [28] FOURIER-HERMITE EXPANSION OF NON-LINEAR VLASOV EQUATION
    CROWNFIE.FR
    FEIX, MR
    PLASMA PHYSICS, 1968, 10 (04): : 443 - &
  • [29] Lyapunov stability of Vlasov equilibria using Fourier-Hermite modes
    Paskauskas, R.
    De Ninno, G.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [30] On the singularity of the Vlasov-Poisson system
    Zheng, Jian
    Qin, Hong
    PHYSICS OF PLASMAS, 2013, 20 (09)