A two-step linearization method for minimization problems

被引:0
|
作者
Antipin, AS
Nedich, A
Yachimovich, M
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-step linearization method for finite-dimensional convex minimization problems is proposed and investigated, and bounds for the rate of convergence of the method for strongly convex functions are given. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 50 条
  • [21] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    [J]. arXiv, 2023,
  • [22] Two-Step Contrast Source Learning Method for Electromagnetic Inverse Scattering Problems
    Si, Anran
    Wang, Miao
    Fang, Fuping
    Dai, Dahai
    [J]. SENSORS, 2024, 24 (18)
  • [23] An economical two-step method with improved phase and stability properties for problems in chemistry
    Marina A. Medvedeva
    T. E. Simos
    [J]. Journal of Mathematical Chemistry, 2021, 59 : 1704 - 1737
  • [24] An economical two-step method with optimal phase and stability properties for problems in chemistry
    Medvedeva, Marina A.
    Simos, T. E.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (08) : 1938 - 1975
  • [25] A TWO-STEP EXPLICIT METHOD FOR A CLASS OF LINEAR PERIODIC INITIAL VALUE PROBLEMS
    李庆宏
    罗亮生
    吴新元
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2003, (01) : 83 - 90
  • [26] A two-step improved Newton method to solve convex unconstrained optimization problems
    T. Dehghan Niri
    S. A. Shahzadeh Fazeli
    M. Heydari
    [J]. Journal of Applied Mathematics and Computing, 2020, 62 : 37 - 53
  • [27] A two-step improved Newton method to solve convex unconstrained optimization problems
    Niri, T. Dehghan
    Fazeli, S. A. Shahzadeh
    Heydari, M.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 37 - 53
  • [28] An economical two-step method with improved phase and stability properties for problems in chemistry
    Medvedeva, Marina A.
    Simos, T. E.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (07) : 1704 - 1737
  • [29] Two-Step Preconditioner of Multilevel Simple Sparse Method for Electromagnetic Scattering Problems
    Hu, Xiaoqing
    Chen, Rushan
    Ding, Dazhi
    Fan, Zhenhong
    Xu, Yuan
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (01): : 14 - 21
  • [30] An economical two-step method with optimal phase and stability properties for problems in chemistry
    Marina A. Medvedeva
    T. E. Simos
    [J]. Journal of Mathematical Chemistry, 2021, 59 : 1938 - 1975