Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks

被引:3
|
作者
Bo, Hongbo [1 ]
McConville, Ryan [2 ]
Hong, Jun [3 ]
Liu, Weiru [2 ]
机构
[1] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[3] Univ West England, Dept Comp Sci & Creat Technol, Bristol, Avon, England
关键词
graph neural networks; social network analysis; social influence analysis; augmentation;
D O I
10.1109/IJCNN52387.2021.9533437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation has been widely used in machine learning for natural language processing and computer vision tasks to improve model performance. However, little research has studied data augmentation on graph neural networks, particularly using augmentation at both train- and test-time. Inspired by the success of augmentation in other domains, we have designed a method for social influence prediction using graph neural networks with train- and test-time augmentation, which can effectively generate multiple augmented graphs for social networks by utilising a variational graph autoencoder in both scenarios. We have evaluated the performance of our method on predicting user influence on multiple social network datasets. Our experimental results show that our end-to-end approach, which jointly trains a graph autoencoder and social influence behaviour classification network, can outperform state-of-the-art approaches, demonstrating the effectiveness of train- and test-time augmentation on graph neural networks for social influence prediction. We observe that this is particularly effective on smaller graphs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] GRAPHPATCHER: Mitigating Degree Bias for Graph Neural Networks via Test-time Augmentation
    Ju, Mingxuan
    Zhao, Tong
    Yu, Wenhao
    Shah, Neil
    Ye, Yanfang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] On the Power of Graph Neural Networks and Feature Augmentation Strategies to Classify Social Networks
    Guettala, Walid
    Gulyas, Laszlo
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 14796 : 287 - 301
  • [3] Data Augmentation for Graph Neural Networks
    Zhao, Tong
    Liu, Yozen
    Neves, Leonardo
    Woodford, Oliver
    Jiang, Meng
    Shah, Neil
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 11015 - 11023
  • [4] Local Augmentation for Graph Neural Networks
    Liu, Songtao
    Ying, Rex
    Dong, Hanze
    Li, Lanqing
    Xu, Tingyang
    Rong, Yu
    Zhao, Peilin
    Huang, Junzhou
    Wu, Dinghao
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Popularity Prediction on Social Platforms with Coupled Graph Neural Networks
    Cao, Qi
    Shen, Huawei
    Gao, Hnhua
    Wei, Bingzheng
    Cheng, Xuegi
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 70 - 78
  • [6] Rationalizing Graph Neural Networks with Data Augmentation
    Liu, Gang
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [7] HetInf: Social Influence Prediction With Heterogeneous Graph Neural Network
    Gao, Liqun
    Wang, Haiyang
    Zhang, Zhouran
    Zhuang, Hongwu
    Zhou, Bin
    FRONTIERS IN PHYSICS, 2022, 9 (09):
  • [8] Influence maximization in social networks using graph embedding and graph neural network
    Kumar, Sanjay
    Mallik, Abhishek
    Khetarpal, Anavi
    Panda, B. S.
    INFORMATION SCIENCES, 2022, 607 : 1617 - 1636
  • [9] Discrete-time graph neural networks for transaction prediction in Web3 social platforms
    Dileo, Manuel
    Zignani, Matteo
    MACHINE LEARNING, 2024, 113 (09) : 6395 - 6412
  • [10] Learning to Pre-train Graph Neural Networks
    Lu, Yuanfu
    Jiang, Xunqiang
    Fang, Yuan
    Shi, Chuan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4276 - 4284