Nanoscale nuclear magnetic resonance with chemical resolution

被引:257
|
作者
Aslam, Nabeel [1 ,2 ]
Pfender, Matthias [1 ,2 ]
Neumann, Philipp [1 ,2 ]
Reuter, Rolf [1 ,2 ]
Zappe, Andrea [1 ,2 ]
de Oliveira, Felipe Favaro [1 ,2 ]
Denisenko, Andrej [1 ,2 ]
Sumiya, Hitoshi [3 ]
Onoda, Shinobu [4 ]
Isoya, Junichi [5 ]
Wrachtrup, Joerg [1 ,6 ]
机构
[1] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol IQST, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Phys Inst 3, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Sumitomo Elect Ind, Itami, Hyogo 6640016, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, 1233 Watanuki, Takasaki, Gunma 3701292, Japan
[5] Univ Tsukuba, Research Ctr Knowledge Communities, Tsukuba, Ibaraki 3058550, Japan
[6] Max Planck Inst Solid State Res, Stuttgart, Germany
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
NMR-SPECTROSCOPY;
D O I
10.1126/science.aam8697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H-1 and F-19 NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was similar to 1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [1] Towards Chemical Structure Resolution with Nanoscale Nuclear Magnetic Resonance Spectroscopy
    Kong, Xi
    Stark, Alexander
    Du, Jiangfeng
    McGuinness, Liam P.
    Jelezko, Fedor
    PHYSICAL REVIEW APPLIED, 2015, 4 (02):
  • [2] CHEMICAL APPLICATIONS OF HIGH RESOLUTION NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
    SHOOLERY, JN
    ANALYTICAL CHEMISTRY, 1955, 27 (02) : 317 - 317
  • [3] High-Resolution Nanoscale Solid-State Nuclear Magnetic Resonance Spectroscopy
    Rose, William
    Haas, Holger
    Chen, Angela Q.
    Jeon, Nari
    Lauhon, Lincoln J.
    Cory, David G.
    Budakian, Raffi
    PHYSICAL REVIEW X, 2018, 8 (01):
  • [4] Magnetic Resonance Imaging with Nanoscale Spatial Resolution
    Welter, Kira
    CHEMPHYSCHEM, 2013, 14 (15) : 3439 - 3439
  • [5] Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earths magnetic field
    Appelt, S
    Kühn, H
    Häsing, FW
    Blümich, B
    NATURE PHYSICS, 2006, 2 (02) : 105 - 109
  • [6] Nanoscale nuclear magnetic imaging with chemical contrast
    Haeberle, T.
    Schmid-Lorch, D.
    Reinhard, F.
    Wrachtrup, J.
    NATURE NANOTECHNOLOGY, 2015, 10 (02) : 125 - 128
  • [7] Nanoscale nuclear magnetic imaging with chemical contrast
    T. Häberle
    D. Schmid-Lorch
    F. Reinhard
    J. Wrachtrup
    Nature Nanotechnology, 2015, 10 : 125 - 128
  • [8] LOW RESOLUTION NUCLEAR MAGNETIC RESONANCE
    SIMPSON, RJ
    MEASUREMENT AND CONTROL, 1968, 1 (12): : 423 - &
  • [9] HIGH RESOLUTION NUCLEAR MAGNETIC RESONANCE
    GRANT, DM
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1964, 15 : 489 - &
  • [10] High resolution nuclear magnetic resonance: From chemical structure to food authenticity
    Mannina, L
    Segre, A
    GRASAS Y ACEITES, 2002, 53 (01) : 22 - 33