Improved generative adversarial networks with reconstruction loss

被引:19
|
作者
Li, Yanchun [1 ]
Xiao, Nanfeng [1 ]
Ouyang, Wanli [2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
Generative adversarial networks (GAN); Image generation; Reconstruction loss; Deep generative model;
D O I
10.1016/j.neucom.2018.10.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple regularization scheme to handle the problem of mode missing and unstable training in the generative adversarial networks (GAN). The key idea is to utilize the visual features learned by the discriminator. We reconstruct the real data by feeding the generator with the real data features extracted by the discriminator. A reconstruction loss is added to the GAN's objective function to enforce the generator can reconstruct from the features of the discriminator, which helps to explicitly guide the generator towards to near the probable configurations of real data. The proposed reconstruction loss improves the performance of GAN, produces higher quality images on different dataset, and can be easily combined with other regularization loss functions such as gradient penalty to improve the performance of various GANs. We conducted experiments on the widespread adopted architecture DCGAN and the complicated ResNet architecture across different datasets, the results of which show the effectiveness and robustness of our proposed method. (C) 2018 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:363 / 372
页数:10
相关论文
共 50 条
  • [41] Building Footprint Generation Using Improved Generative Adversarial Networks
    Shi, Yilei
    Li, Qingyu
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 603 - 607
  • [42] An improved infrared simulation method based on generative adversarial networks
    Lyu, Xiaoyong
    Jia, Tenglin
    Liu, Yinghao
    Shan, Peng
    Li, Lianjiang
    Zhao, Yuliang
    INFRARED PHYSICS & TECHNOLOGY, 2024, 140
  • [43] Improved face super-resolution generative adversarial networks
    Wang, Mengxue
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Jian, Muwei
    MACHINE VISION AND APPLICATIONS, 2020, 31 (04)
  • [44] Improved face super-resolution generative adversarial networks
    Mengxue Wang
    Zhenxue Chen
    Q. M. Jonathan Wu
    Muwei Jian
    Machine Vision and Applications, 2020, 31
  • [45] Improved Training of Generative Adversarial Networks Using Decision Forests
    Zuo, Yan
    Avraham, Gil
    Drummond, Tom
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3491 - 3500
  • [46] TURBULENCE IMAGE RECOVERY BASED ON IMPROVED GENERATIVE ADVERSARIAL NETWORKS
    Bin, Wei
    Houbu, Li
    Nan, Ding
    Shi, Zhaoyang
    Zhao, Enguo
    Tao, Rong
    Fang, Yao
    UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2024, 25 (03) : 3040 - 3050
  • [47] Improved Training of Generative Adversarial Networks using Representative Features
    Bang, Duhyeon
    Shim, Hyunjung
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [48] Color Face Image Generation with Improved Generative Adversarial Networks
    Chang, Yeong-Hwa
    Chung, Pei-Hua
    Chai, Yu-Hsiang
    Lin, Hung-Wei
    ELECTRONICS, 2024, 13 (07)
  • [49] Ultrasound Imaging Improved by the Context Encoder Reconstruction Generative Adversarial Network
    Huang, Chao-Yi
    Chen, Oscal Tzyh-Chiang
    Wu, Guo-Zua
    Chang, Chih-Chi
    Hu, Chang-Lin
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [50] Improved Two Stage Generative Adversarial Networks for Adversarial Example Generation with Real Exposure
    School of ICT, Gautam Buddha University, Greater Noida, India
    Recent Advances in Computer Science and Communications, 7 (81-90):