Coherent control using kinetic energy and the geometric phase of a conical intersection

被引:4
|
作者
Liekhus-Schmaltz, Chelsea [1 ,2 ]
McCracken, Gregory A. [1 ,3 ]
Kaldun, Andreas [1 ,2 ]
Cryan, James P. [1 ]
Bucksbaum, Philip H. [1 ,2 ,3 ]
机构
[1] Stanford PULSE Inst, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 145卷 / 14期
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4964392
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conical intersections (CIs) between molecular potential energy surfaces with non-vanishing non-adiabatic couplings generally occur in any molecule consisting of at least three atoms. They play a fundamental role in describing the molecular dynamics beyond the Born-Oppenheimer approximation and have been used to understand a large variety of effects, from photofragmentation and isomerization to more exotic applications such as exciton fission in semiconductors. However, few studies have used the features of a CI as a tool for coherent control. Here we demonstrate two modes of control around a conical intersection. The first uses a continuous light field to control the population on the two intersecting electronic states in the vicinity of a CI. The second uses a pulsed light field to control wavepackets that are subjected to the geometric phase shift in transit around a CI. This second technique is likely to be useful for studying the role of nuclear dynamics in electronic coherence phenomena. (C) 2016 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Control of Nonadiabatic Passage through a Conical Intersection by a Dynamic Resonance
    Epshtein, Michael
    Yifrach, Yair
    Portnov, Alexander
    Bar, Ilana
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (09): : 1717 - 1724
  • [32] Electronic Control of Initial Nuclear Dynamics Adjacent to a Conical Intersection
    Vacher, Morgane
    Meisner, Jan
    Mendive-Tapia, David
    Bearpark, Michael J.
    Robb, Michael A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2015, 119 (21): : 5165 - 5172
  • [33] Geometric phase for collinear conical intersections. I. Geometric phase angle and vector potentials
    Li, Xuan
    Brue, Daniel A.
    Kendrick, Brian K.
    Blandon, Juan D.
    Parker, Gregory A.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (06):
  • [34] Adiabatic geometric phase in the nonlinear coherent coupler
    L. D. Zhang
    L. B. Fu
    J. Liu
    The European Physical Journal D, 2011, 65 : 557 - 561
  • [35] Geometric phase for isotopic spin coherent states
    Kar, TK
    Ghosh, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1197 - 1203
  • [36] EXISTENCE OF A GEOMETRIC PHASE IN A COHERENT-STATE
    CHEN, SQ
    NI, GJ
    SHEN, YL
    PHYSICS LETTERS A, 1993, 178 (5-6) : 339 - 341
  • [37] Adiabatic geometric phase in the nonlinear coherent coupler
    Zhang, L. D.
    Fu, L. B.
    Liu, J.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 65 (03): : 557 - 561
  • [38] Spin coherent states as anticipators of the geometric phase
    Aravind, PK
    AMERICAN JOURNAL OF PHYSICS, 1999, 67 (10) : 899 - 904
  • [39] Intersection of Conic Sections Using Geometric Algebra
    Chomicki, Clement
    Breuils, Stephane
    Biri, Venceslas
    Nozick, Vincent
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 175 - 187
  • [40] Coherent control using the carrier-envelope phase
    Abel, Mark J.
    Pfeifer, Thomas
    Jullien, Aurelie
    Nagel, Phillip M.
    Bell, Justine
    Neumark, Daniel M.
    Leone, Stephen R.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1196 - +