Permutation polynomials over finite rings

被引:4
|
作者
Gorcsos, Dalma [1 ]
Horvath, Gabor [1 ]
Meszaros, Anett [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Permutation polynomials; Local rings; Group of permutation polynomial; functions; INTERLEAVERS;
D O I
10.1016/j.ffa.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PPol(R) denote the group of permutation polynomial functions over the finite, commutative, unital ring R under composition. We generalize numerous results about permutation polynomials over Z to local rings by treating them under a unified manner. In particular, we provide a natural wreath product decomposition of permutation polynomial functions over the maximal ideal M and over the finite field R/M. We characterize the group of permutation polynomial functions over M whenever the condition M-vertical bar R/M vertical bar = {0} applies. Then we derive the size of PPol(R), thereby generalizing the same size formulas for Z(p)(n). Finally, we completely characterize when the group PPol(R) is solvable, nilpotent, or abelian. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 50 条
  • [41] PERMUTATION POLYNOMIALS IN SEVERAL-VARIABLES OVER RESIDUE CLASS RINGS
    KAISER, HK
    NOBAUER, W
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 171 - 175
  • [42] Interleavers for turbo codes using permutation polynomials over integer rings
    Sun, J
    Takeshita, OY
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 101 - 119
  • [43] A simple coefficient test for cubic permutation polynomials over integer rings
    Chen, Yen-Lun
    Ryu, Jonghoon
    Takeshita, Oscar Y.
    IEEE COMMUNICATIONS LETTERS, 2006, 10 (07) : 549 - 551
  • [44] A simple coefficient test for cubic permutation polynomials over integer rings
    Dept. of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, United States
    IEEE Commun Lett, 2006, 7 (549-551):
  • [45] Permutation polynomials over finite fields - A survey of recent advances
    Hou, Xiang-dong
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 : 82 - 119
  • [46] New Permutation Reversed Dickson Polynomials over Finite Fields
    Cheng, Kaimin
    ALGEBRA COLLOQUIUM, 2023, 30 (01) : 111 - 120
  • [47] A survey of compositional inverses of permutation polynomials over finite fields
    Wang, Qiang
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, : 831 - 870
  • [48] Permutation polynomials from trace functions over finite fields
    Zeng, Xiangyong
    Tian, Shizhu
    Tu, Ziran
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 35 : 36 - 51
  • [49] Image encryption based on permutation polynomials over finite fields
    Wu, Jianhua
    Liu, Hai
    Zhu, Xishun
    OPTICA APPLICATA, 2020, 50 (03) : 357 - 376
  • [50] Some new results on permutation polynomials over finite fields
    Ma, Jingxue
    Zhang, Tao
    Feng, Tao
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (02) : 425 - 443