The Paradox of Time in Dynamic Causal Systems

被引:7
|
作者
Rehder, Bob [1 ]
Davis, Zachary J. [1 ]
Bramley, Neil [2 ]
机构
[1] NYU, Dept Psychol, 6 Washington Pl, New York, NY 10003 USA
[2] Univ Edinburgh, Psychol Dept, Edinburgh EH8 9JZ, Midlothian, Scotland
关键词
causal inference; causal graphs; dynamic systems; causal learning; time; continuous; event cognition; interventions; MODELS;
D O I
10.3390/e24070863
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent work has shown that people use temporal information including order, delay, and variability to infer causality between events. In this study, we build on this work by investigating the role of time in dynamic systems, where causes take continuous values and also continually influence their effects. Recent studies of learning in these systems explored short interactions in a setting with rapidly evolving dynamics and modeled people as relying on simpler, resource-limited strategies to grapple with the stream of information. A natural question that arises from such an account is whether interacting with systems that unfold more slowly might reduce the systematic errors that result from these strategies. Paradoxically, we find that slowing the task indeed reduced the frequency of one type of error, albeit at the cost of increasing the overall error rate. To explain these results we posit that human learners analyze continuous dynamics into discrete events and use the observed relationships between events to draw conclusions about causal structure. We formalize this intuition in terms of a novel Causal Event Abstraction model and show that this model indeed captures the observed pattern of errors. We comment on the implications these results have for causal cognition.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Governing equation discovery based on causal graph for nonlinear dynamic systems
    Jia, Dongni
    Zhou, Xiaofeng
    Li, Shuai
    Liu, Shurui
    Shi, Haibo
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [42] Stacking dynamic time warping for the diagnosis of dynamic systems
    Alonso, Carlos J.
    Prieto, Oscar J.
    Rodriguez, Juan J.
    Bregon, Anibal
    Pulido, Belarmino
    CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2007, 4788 : 11 - +
  • [43] Transcendental Dynamic Schemes of Time Order in the Light of Zeno's "Arrow Paradox"
    Ruzic, Goran Z.
    Dordevic, Strahinja
    FILOZOFSKA ISTRAZIVANJA, 2024, 44 (01): : 109 - 121
  • [44] Causal research for singular periodically time-varying discrete-time systems
    Su, X.-M.
    Zhang, Q.-L.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2001, 22 (06): : 646 - 648
  • [45] Time response of complex dynamic systems
    Lecomte, C.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 2305 - 2313
  • [47] IDENTIFICATION OF DYNAMIC SYSTEMS WITH DEAD TIME
    KERR, R
    PAIEWONSKY, B
    SIAM REVIEW, 1962, 4 (02) : 180 - &
  • [48] Causal reappraisal of the quantum three-box paradox
    Blasiak, Pawel
    Borsuk, Ewa
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [49] The causal generalization paradox: The case of treatment outcome research
    Staines, Graharn L.
    REVIEW OF GENERAL PSYCHOLOGY, 2008, 12 (03) : 236 - 252
  • [50] Competencies and firm performance: Examining the causal ambiguity paradox
    King, AW
    Zeithaml, CP
    STRATEGIC MANAGEMENT JOURNAL, 2001, 22 (01) : 75 - 99