Swapping 2 x 2 blocks in the Schur and generalized Schur form

被引:3
|
作者
Camps, Daan [1 ]
Mastronardi, Nicola [2 ]
Vandebril, Raf [1 ]
Van Dooren, Paul [3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] CNR, Ist Applicaz Calcolo M Picone, Sede Di Bari, Italy
[3] Catholic Univ Louvain, Dept Math Engn, Louvain La Neuve, Belgium
关键词
Eigenvalues; Schur form; Reordering Schur form; Stability;
D O I
10.1016/j.cam.2019.05.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe how to swap two 2 x 2 blocks in a real Schur form and a generalized real Schur form. We pay special attention to the numerical stability of the method. We also illustrate the stability of our approach by a series of numerical tests. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On Generalized Schur Numbers
    Ahmed, Tanbir
    Schaal, Daniel J.
    EXPERIMENTAL MATHEMATICS, 2016, 25 (02) : 213 - 218
  • [22] The Schur algorithm for generalized Schur functions IV: Unitary realizations
    Alpay, D
    Azizov, TY
    Dijksma, A
    Langer, H
    Wanjala, G
    CURRENT TRENDS IN OPERATOR THEORY AND ITS APPLICATIONS, 2004, 149 : 23 - 45
  • [23] On generalized inverses of partitioned matrix in Banachiewicz-Schur form
    Xiong, Zhiping
    Qin, Yingying
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (02): : 107 - 113
  • [24] Generalized Schur Numbers for x1 + x2 + c=3x3
    Kezdy, Andre E.
    Snevily, Hunter S.
    White, Susan C.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [25] Strongly real 2-blocks and the Frobenius-Schur indicator
    Murray, J
    OSAKA JOURNAL OF MATHEMATICS, 2006, 43 (01) : 201 - 213
  • [26] Generalized inverses of partitioned matrices in Banachiewicz-Schur form
    Baksalary, JK
    Styan, GPH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 (1-3) : 41 - 47
  • [27] The Schur algorithm for generalized Schur functions I: coisometric realizations
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS, 2001, 129 : 1 - 36
  • [28] On the Schur Positivity of Δe2en[X]
    Qiu, Dun
    Remmel, Jeffrey B.
    Sergel, Emily
    Xin, Guoce
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [29] Some representations for the Drazin inverse of 2 x 2 block matrix with generalized Schur complement equal to zero
    Dong, Pengfei
    He, Yi
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 223 - 226
  • [30] SCHUR-CONVEXITY, SCHUR GEOMETRIC AND SCHUR HARMONIC CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC FUNCTIONS
    Shi, Huan-Nan
    Zhang, Jing
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 349 - 358