Protonic Ceramic Fuel Cell with Bi-Layered Structure of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Functional Interlayer and BaZr0.8Yb0.2O3-δ Electrolyte

被引:16
|
作者
Shimada, Hiroyuki [1 ]
Yamaguchi, Yuki [1 ]
Ryuma, Matsuda Malik [2 ]
Sumi, Hirofumi [1 ]
Nomura, Katsuhiro [1 ]
Shin, Woosuck [1 ]
Mikami, Yuichi [3 ]
Yamauchi, Kosuke [3 ]
Nakata, Yuki [3 ]
Kuroha, Tomohiro [3 ]
Mori, Masashi [2 ]
Mizutani, Yasunobu [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Innovat Funct Mat Res Inst, Dept Mat & Chem, Nagoya, Aichi 4638560, Japan
[2] Cent Res Inst Elect Power Ind CRIEPI, Energy Transformat Res Lab, Yokosuka, Kanagawa 2400916, Japan
[3] Panasonic Corp, Technol Div, Moriguchi, Osaka 5708501, Japan
关键词
TRANSPORT-PROPERTIES; BARIUM ZIRCONATE; NEXT-GENERATION; POLARIZATION; PERFORMANCE; CONDUCTION; EFFICIENCY; CATHODE; SULFUR; COKING;
D O I
10.1149/1945-7111/ac3d04
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Widespread application of PCFCs will require higher performance even at lower temperatures (<600 degrees C). This paper reports development of a protonic ceramic fuel cell (PCFC) with a bi-layered proton-conducting phase structure consisting of a BaZr0.1Ce0.7Y0.1Yb0.1O3-delta (BZCYYb1711) functional interlayer and a BaZr0.8Yb0.2O3-delta (BZYb20) electrolyte. In this PCFC, a zirconate-based oxide with high durability against CO2, BZYb20, is selected as the electrolyte material, and a BZCYYb1711 functional interlayer is applied between the dense BZYb20 electrolyte and a cathode to achieve higher power density and higher open-circuit voltage (OCV) of the PCFC. In cell fabrication via conventional wet process and co-sintering, although Ni diffusion occurs from NiO-BZYb20 anode into the approximately 8-mu m-thick BZYb20 electrolyte, almost no Ni diffuses into the BZCYYb1711 functional interlayer. Compared to a PCFC without this functional interlayer, the proposed PCFC exhibits higher electrochemical performance. Results showed that the BZCYYb1711 functional interlayer reduces cathode polarization resistance and increase power density of the PCFC. Moreover, the OCV increases because the BZCYYb1711 functional interlayer suppresses the current leakage caused by hole conduction of the BZYb20 electrolyte. In conclusion, this bi-layered structure effectively improves both the power density and OCV of PCFCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Additive effect of NiO on electrochemical properties of mixed ion conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δ
    Shimada, Hiroyuki
    Yamaguchi, Toshiaki
    Sumi, Hirofumi
    Yamaguchi, Yuki
    Nomura, Katsuhiro
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (04) : 257 - 261
  • [22] A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid
    Chen, Meilong
    Zhou, Mingyang
    Liu, Zhijun
    Liu, Jiang
    CERAMICS INTERNATIONAL, 2022, 48 (12) : 17208 - 17216
  • [23] Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte
    Zhao, Fei
    Jin, Chao
    Yang, Chenghao
    Wang, Siwei
    Chen, Fanglin
    JOURNAL OF POWER SOURCES, 2011, 196 (02) : 688 - 691
  • [24] Enhanced Electrochemical Performance of a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Composite Oxygen Electrode for Protonic Ceramic Electrochemical Cells
    Wang, Yakun
    Pei, Kai
    Zhao, Bote
    Zhao, Yun
    Wang, Haobing
    Niu, Quan
    Chen, Yu
    ENERGY & FUELS, 2021, 35 (17) : 14101 - 14109
  • [25] Enhancing Sulfur Tolerance of a Ni-YSZ Anode through BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Infiltration
    Sengodan, Sivaprakash
    Liu, Mingfei
    Lim, Tak-Hyoung
    Shin, Jeeyoung
    Liu, Meilin
    Kim, Guntae
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : F668 - F673
  • [26] Effect of grain size on the electrical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ solid electrolytes with addition of NiO
    Sun, Haibin
    Guo, Xue
    Li, Jiao
    Li, Guochang
    Yang, Zanzhong
    Ding, Hao
    Yan, Weilu
    Qi, Shuai
    Wang, Peng
    Song, Youjie
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 622 - 626
  • [27] BaZr0.1Ce0.7Y0.1Yb0.1O3-δ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells
    Li, Meng
    Hua, Bin
    Jiang, San Ping
    Pu, Jian
    Chi, Bo
    Jian, Li
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 15975 - 15981
  • [28] Hydrogen oxidation at the Pt-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) interface
    Sun, Wenping
    Liu, Mingfei
    Feng, Shi
    Liu, Wei
    Park, Hyeon Cheol
    Liu, Meilin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (11) : 3820 - 3826
  • [29] Atmospheric plasma-sprayed BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolyte membranes for intermediate-temperature solid oxide fuel cells
    Sun, Haibin
    Zhang, Shanlin
    Li, Chengxin
    Rainwater, Ben
    Liu, Yuchen
    Zhang, Lei
    Zhang, Yujun
    Li, Changjiu
    Liu, Meilin
    CERAMICS INTERNATIONAL, 2016, 42 (16) : 19231 - 19236
  • [30] BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode
    Ding, Hanping
    Xue, Xingjian
    JOURNAL OF POWER SOURCES, 2010, 195 (20) : 7038 - 7041