Protonic Ceramic Fuel Cell with Bi-Layered Structure of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Functional Interlayer and BaZr0.8Yb0.2O3-δ Electrolyte

被引:16
|
作者
Shimada, Hiroyuki [1 ]
Yamaguchi, Yuki [1 ]
Ryuma, Matsuda Malik [2 ]
Sumi, Hirofumi [1 ]
Nomura, Katsuhiro [1 ]
Shin, Woosuck [1 ]
Mikami, Yuichi [3 ]
Yamauchi, Kosuke [3 ]
Nakata, Yuki [3 ]
Kuroha, Tomohiro [3 ]
Mori, Masashi [2 ]
Mizutani, Yasunobu [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Innovat Funct Mat Res Inst, Dept Mat & Chem, Nagoya, Aichi 4638560, Japan
[2] Cent Res Inst Elect Power Ind CRIEPI, Energy Transformat Res Lab, Yokosuka, Kanagawa 2400916, Japan
[3] Panasonic Corp, Technol Div, Moriguchi, Osaka 5708501, Japan
关键词
TRANSPORT-PROPERTIES; BARIUM ZIRCONATE; NEXT-GENERATION; POLARIZATION; PERFORMANCE; CONDUCTION; EFFICIENCY; CATHODE; SULFUR; COKING;
D O I
10.1149/1945-7111/ac3d04
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Widespread application of PCFCs will require higher performance even at lower temperatures (<600 degrees C). This paper reports development of a protonic ceramic fuel cell (PCFC) with a bi-layered proton-conducting phase structure consisting of a BaZr0.1Ce0.7Y0.1Yb0.1O3-delta (BZCYYb1711) functional interlayer and a BaZr0.8Yb0.2O3-delta (BZYb20) electrolyte. In this PCFC, a zirconate-based oxide with high durability against CO2, BZYb20, is selected as the electrolyte material, and a BZCYYb1711 functional interlayer is applied between the dense BZYb20 electrolyte and a cathode to achieve higher power density and higher open-circuit voltage (OCV) of the PCFC. In cell fabrication via conventional wet process and co-sintering, although Ni diffusion occurs from NiO-BZYb20 anode into the approximately 8-mu m-thick BZYb20 electrolyte, almost no Ni diffuses into the BZCYYb1711 functional interlayer. Compared to a PCFC without this functional interlayer, the proposed PCFC exhibits higher electrochemical performance. Results showed that the BZCYYb1711 functional interlayer reduces cathode polarization resistance and increase power density of the PCFC. Moreover, the OCV increases because the BZCYYb1711 functional interlayer suppresses the current leakage caused by hole conduction of the BZYb20 electrolyte. In conclusion, this bi-layered structure effectively improves both the power density and OCV of PCFCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Design and Fabrication of Protonic Ceramic Fuel Cells Based on BaZr0.8Y0.2O3-δ |BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Bilayer Electrolyte
    Ortiz-Corrales, Julian A.
    Matsuo, Hiroki
    Otomo, Junichiro
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (12)
  • [2] Improved durability of protonic ceramic fuel cells with BaZr0.8Yb0.2O3-6 electrolyte by introducing porous BaZr0.1Ce0.7Y0.1Yb0.1O3-6 buffer interlayer
    Shimada, Hiroyuki
    Mikami, Yuichi
    Yamauchi, Kosuke
    Kuroha, Tomohiro
    Uchi, Takayasu
    Nakamura, Kazuo
    Kobayashi, Shun
    Matsuda, Ryuma Malik
    Okuyama, Yuji
    Mizutani, Yasunobu
    Mori, Masashi
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 3895 - 3901
  • [3] Reversible characterization of power generation and steam electrolysis for protonic ceramic cells with bi-layer electrolyte of BaZr0.8Yb0.2O3-δ and BaZr0.1 Ce0.7 Y0.1 Yb0.1O3-δ
    Wiff, Juan Paulo
    Matsuda, Ryuma Malik
    Shimada, Hiroyuki
    Sumi, Hirofumi
    Mizutani, Yasunobu
    Mikami, Yuichi
    Yamauchi, Kosuke
    Kuroha, Tomohiro
    Mori, Masashi
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40579 - 40585
  • [4] Effect of Co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for protonic ceramic fuel cells
    Wan, Yanhong
    He, Beibei
    Wang, Ranran
    Ling, Yihan
    Zhao, Ling
    JOURNAL OF POWER SOURCES, 2017, 347 : 14 - 20
  • [5] Fabrication and characterization of a tubular ceramic fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte
    Hanifi, Amir Reza
    Sandhu, Navjot Kaur
    Etsell, Thomas H.
    Luo, Jing-Li
    Sarkar, Partha
    JOURNAL OF POWER SOURCES, 2017, 341 : 264 - 269
  • [6] Comprehensive understanding of charge and mass transport in BaZr0.1Ce0.7Y0.1Yb0.1O3-δ
    Shin, Donghwi
    Kim, In-Ho
    Singh, Bhupendra
    Park, Jun-Young
    Song, Sun-Ju
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40192 - 40204
  • [7] Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by addition of nickel oxide
    Liu, Yong
    Yang, Lei
    Liu, Mingfei
    Tang, Zhiyuan
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2011, 196 (23) : 9980 - 9984
  • [8] High-performance BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) protonic ceramic fuel cell electrolytes by the Ba evaporation inhibition strategy
    Zhong, Zhaoyu
    Song, Tao
    Zhao, Shikai
    Sun, Haibin
    Guo, Xue
    Feng, Yurun
    Hu, Qiangqiang
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 3633 - 3640
  • [9] Performance Comparison of Perovskite Composite Cathodes with BaZr0.1Ce0.7Y0.1Yb0.1O3-δin Anode-Supported Protonic Ceramic Fuel Cells
    Shimada, Hiroyuki
    Yamaguchi, Yuki
    Sumi, Hirofumi
    Mizutani, Yasunobu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (12)
  • [10] Electrochemical behavior and performances of Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ cermet anodes for protonic ceramic fuel cell
    Pers, P.
    Mao, V.
    Taillades, M.
    Taillades, G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (04) : 2402 - 2409