Enhancing Exploration Algorithms for Navigation with Visual SLAM

被引:4
|
作者
Muravyev, Kirill [1 ,2 ]
Bokovoy, Andrey [1 ]
Yakovlev, Konstantin [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Artificial Intelligence Res Inst, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
来源
关键词
Exploration; Vision-based simultaneous localization and mapping; Simulation; Robotics; VISION; SYSTEM; SCALE; IMU;
D O I
10.1007/978-3-030-86855-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exploration is an important step in autonomous navigation of robotic systems. In this paper we introduce a series of enhancements for exploration algorithms in order to use them with vision-based simultaneous localization and mapping (vSLAM) methods. We evaluate developed approaches in photo-realistic simulator in two modes: with ground-truth depths and neural network reconstructed depth maps as vSLAM input. We evaluate standard metrics in order to estimate exploration coverage.
引用
收藏
页码:197 / 212
页数:16
相关论文
共 50 条
  • [31] Enhancing Underwater SLAM Navigation and Perception: A Comprehensive Review of Deep Learning Integration
    Merveille, Fomekong Fomekong Rachel
    Jia, Baozhu
    Xu, Zhizun
    Fred, Bissih
    SENSORS, 2024, 24 (21)
  • [32] Autonomous Indoor Exploration with an Event-Based Visual SLAM System
    Hoffmann, Raoul
    Weikersdorfer, David
    Conradt, Jorg
    2013 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2013), 2013, : 38 - 43
  • [33] Autonomous Cooperative Visual Navigation for Planetary Exploration Robots
    Bahraini, Masoud S.
    Zenati, Abdelhafid
    Aouf, Nabil
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9653 - 9658
  • [34] U-VIP-SLAM: Underwater Visual-Inertial-Pressure SLAM for Navigation of Turbid and Dynamic Environments
    Chinthaka Amarasinghe
    Asanga Rathnaweera
    Sanjeeva Maithripala
    Arabian Journal for Science and Engineering, 2024, 49 : 3193 - 3207
  • [35] U-VIP-SLAM: Underwater Visual-Inertial-Pressure SLAM for Navigation of Turbid and Dynamic Environments
    Amarasinghe, Chinthaka
    Rathnaweera, Asanga
    Maithripala, Sanjeeva
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 3193 - 3207
  • [36] YG-SLAM: Enhancing Visual SLAM in Dynamic Environments With YOLOv8 and Geometric Constraints
    Chu, Guoming
    Peng, Yan
    Luo, Xuhong
    Gong, Jing
    IEEE ACCESS, 2023, 11 : 141421 - 141434
  • [37] A comparison of Visual SLAM Algorithms ORB-SLAM3 and DynaSLAM on KITTI and TUM Monocular Datasets
    de Jesus, Kesse Jonatas
    Klan Pereira, Mateus Osvaldo
    Emmendorfer, Leonardo Ramos
    Tello Gamarra, Daniel Fernando
    2023 36TH CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES, SIBGRAPI 2023, 2023, : 109 - 114
  • [38] SLAM for Robot Navigation
    Temeltas, Hakan
    Kavak, Deniz
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2008, 23 (12) : 16 - 19
  • [39] A visual SLAM algorithm based on adaptive inertial navigation assistant feature matching
    Jia X.
    Zhao D.
    Zhang L.
    Xiao G.
    Xu Q.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (05): : 621 - 630
  • [40] Visual Navigation Method for Robot Based on Improved ORB-SLAM2
    Dong R.
    Wang Y.
    Kan J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (10): : 306 - 317