共 35 条
Voluntary Exercise Promotes Beneficial Anti-aging Mechanisms in SAMP8 Female Brain
被引:34
|作者:
Bayod, Sergi
[1
,2
]
Guzman-Brambila, Carolina
[4
]
Sanchez-Roige, Sandra
[6
]
Lalanza, Jaume F.
[3
]
Kaliman, Perla
[7
]
Ortuno-Sahagun, Daniel
[5
]
Escorihuela, Rosa M.
[3
]
Pallas, Merce
[1
,2
]
机构:
[1] Univ Barcelona, Unitat Farmacol & Farmacognosia, Fac Farm, Inst Biomed IBUB,Nucli Univ Pedralbes, E-08028 Barcelona, Spain
[2] Ctr Invest Biomed Red Enfermedades Neurodegenerat, Barcelona, Spain
[3] Univ Autonoma Barcelona, Inst Neurociencies, Dept Psiquiatria & Med Legal, Bellaterra 08193, Spain
[4] Inst Tecnol & Estudios Super Monterrey, Div Biotecnol & Salud, Escuela Med, Guadalajara 45201, Jalisco, Mexico
[5] Univ Guadalajara, IICB, CUCS, Guadalajara 44340, Jalisco, Mexico
[6] Univ Sussex, Sch Psychol, Brighton BN1 9QG, E Sussex, England
[7] CSIC, IIBB, Barcelona 08036, Spain
关键词:
Voluntary exercise;
Aging;
Senescence;
Sirtuin;
1;
AMPK;
Mitochondria;
SAMP8;
MITOCHONDRIAL DYSFUNCTION;
MODERATE EXERCISE;
PHYSICAL-EXERCISE;
OXIDATIVE STRESS;
AMYLOID-BETA;
LIFE-SPAN;
KINASE;
PATHWAY;
LKB1;
MODULATION;
D O I:
10.1007/s12031-014-0376-6
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.
引用
收藏
页码:525 / 532
页数:8
相关论文