On deviation measures in stochastic integer programming

被引:15
|
作者
Märkert, A [1 ]
Schultz, R [1 ]
机构
[1] Univ Duisburg Gesamthsch, Inst Math, D-47048 Duisburg, Germany
关键词
stochastic programming; mean-risk models; mixed-integer optimization;
D O I
10.1016/j.orl.2004.09.003
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose extensions of traditional expectation-based stochastic integer programs to mean-risk models. Risk is measured by expected deviations of suitable random variables from their means or from preselected targets. We derive structural properties of the resulting stochastic programs and present first algorithmic ideas to achieve problem decomposition. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:441 / 449
页数:9
相关论文
共 50 条
  • [21] Stochastic integer programming: General models and algorithms
    Haneveld, WKK
    van der Vlerk, MH
    ANNALS OF OPERATIONS RESEARCH, 1999, 85 (0) : 39 - 57
  • [22] Decomposition of test sets in stochastic integer programming
    Hemmecke, R
    Schultz, R
    MATHEMATICAL PROGRAMMING, 2003, 94 (2-3) : 323 - 341
  • [23] Stochastic integer programming:General models and algorithms
    Willem K. Klein Haneveld
    Maarten H. van der Vlerk
    Annals of Operations Research, 1999, 85 : 39 - 57
  • [24] Decomposition of test sets in stochastic integer programming
    R. Hemmecke
    R. Schultz
    Mathematical Programming, 2003, 94 : 323 - 341
  • [25] Discontinuous optimization problems in stochastic integer programming
    Schultz, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 33 - 36
  • [26] On parallelizing dual decomposition in stochastic integer programming
    Lubin, Miles
    Martin, Kipp
    Petra, Cosmin G.
    Sandikci, Burhaneddin
    OPERATIONS RESEARCH LETTERS, 2013, 41 (03) : 252 - 258
  • [27] Polyhedral risk measures in stochastic programming
    Eichhorn, A
    Römisch, W
    SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (01) : 69 - 95
  • [28] Stochastic integer programming:: Limit theorems and confidence intervals
    Eichhorn, Andreas
    Roemisch, Werner
    MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (01) : 118 - 135
  • [29] Applied stochastic integer programming:: Scheduling in the processing industries
    Sand, G
    Engell, S
    Märkert, A
    Schultz, R
    MODELLING, SIMULATION AND OPTIMIZATION OF COMPLEX PROCESSES, 2005, : 441 - 450
  • [30] A provably convergent heuristic for stochastic bicriteria integer programming
    Gutjahr, Walter J.
    JOURNAL OF HEURISTICS, 2009, 15 (03) : 227 - 258