Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations

被引:66
|
作者
He, YN [1 ]
机构
[1] Xi An Jiao Tong Univ, Fac Sci, Xian 710049, Peoples R China
关键词
Navier-Stokes problem; penalty finite element method; backward Euler scheme; error estimate;
D O I
10.1090/S0025-5718-05-01751-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (X-h, M-h) which satisfies some approximate assumption. An optimal error estimate of the numerical velocity and pressure is provided for the fully discrete penalty finite element method when the parameters epsilon, Delta t and h are sufficiently small.
引用
收藏
页码:1201 / 1216
页数:16
相关论文
共 50 条