Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model

被引:7
|
作者
Bayen, Alexandre [1 ]
Coron, Jean-Michel [2 ]
De Nitti, Nicola [3 ]
Keimer, Alexander [1 ]
Pflug, Lukas [4 ,5 ]
机构
[1] Univ Calif Berkeley, Inst Transportat Studies ITS, Berkeley, CA 94720 USA
[2] Sorbonne Univ, Univ Paris Diderot SPC, CNRS, INRIA,Lab Jacques Louis Lions,Equipe Cage, Paris, France
[3] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Anal, Dept Data Sci, Cauerstr 11, D-91058 Erlangen, Germany
[4] Competence Unit Sci Comp, Martensstr 5a, D-91058 Erlangen, Germany
[5] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Math, Dept Math, Cauerstr 11, D-91058 Erlangen 91058, Germany
关键词
Conservation laws; Nonlocal flux; Traffic flow; Exact controllability; Boundary controllability; Stabilization; Characteristics; SCALAR CONSERVATION LAW; LARGE-TIME BEHAVIOR; DISSIPATIVE HYPERBOLIC SYSTEMS; EXPONENTIAL STABILITY; ENTROPY SOLUTIONS; GLOBAL EXISTENCE; SMOOTH SOLUTIONS; CROWD DYNAMICS; ATTAINABLE SET; EQUATIONS;
D O I
10.1007/s10013-021-00506-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the exact boundary controllability of a class of nonlocal conservation laws modeling traffic flow. The velocity of the macroscopic dynamics depends on a weighted average of the traffic density ahead and the averaging kernel is of exponential type. Under specific assumptions, we show that the boundary controls can be used to steer the system towards a target final state or out-flux. The regularizing effect of the nonlocal term, which leads to the uniqueness of weak solutions, enables us to prove that the exact controllability is equivalent to the existence of weak solutions to the backwards-in-time problem. We also study steady states and the long-time behavior of the solution under specific boundary conditions.
引用
收藏
页码:957 / 985
页数:29
相关论文
共 50 条
  • [31] A nonlocal Lagrangian traffic flow model and the zero-filter limit
    Coclite, G. M.
    Karlsen, K. H.
    Risebro, N. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [32] Network models for nonlocal traffic flow
    Friedrich, Jan
    Goettlich, Simone
    Osztfalk, Maximilian
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (01) : 213 - 235
  • [33] An asymptotic investigation into the stabilization effect of suction in the rotating-disk boundary layer flow
    Turkyilmazoglu, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (05) : 750 - 759
  • [34] ON AN ASYMPTOTIC MODEL FOR FREE BOUNDARY DARCY FLOW IN POROUS MEDIA
    Granero-Belinchon, Rafael
    Scrobogna, Stefano
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4937 - 4970
  • [35] Boundary exact controllability and asymptotic analysis of thin elastic bodies
    Niane, MT
    Sene, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (01): : 65 - 70
  • [36] Asymptotic controllability and exponential stabilization of nonlinear control systems at singular points
    Grune, L
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) : 1585 - 1603
  • [37] Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls
    Li, Tatsien
    Rao, Bopeng
    ASYMPTOTIC ANALYSIS, 2014, 86 (3-4) : 199 - 226
  • [38] Asymptotic controllability and input-to-state stabilization: The effect of actuator errors
    Malisoff, M
    Sontag, E
    OPTIMAL CONTROL, STABILIZATON AND NONSMOOTH ANALYSIS, 2004, 301 : 155 - 171
  • [39] Adaptive boundary observer for ARZ traffic flow model with domain and boundary uncertainties
    Wu, Jiahao
    Zhan, Jingyuan
    Zhang, Liguo
    IFAC PAPERSONLINE, 2023, 56 (02): : 8964 - 8969
  • [40] Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls
    Li, Tatsien
    Rao, Bopeng
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (17-18) : 687 - 693