A Novel Surrogate Nomogram Capable of Predicting OncotypeDX Recurrence Score

被引:2
|
作者
Davey, Matthew G. [1 ,2 ]
Jalali, Amirhossein [3 ,4 ]
Ryan, Eanna J. [2 ]
McLaughlin, Ray P. [2 ]
Sweeney, Karl J. [2 ]
Barry, Michael K. [2 ]
Malone, Carmel M. [2 ]
Keane, Maccon M. [5 ]
Lowery, Aoife J. [1 ,2 ]
Miller, Nicola [1 ]
Kerin, Michael J. [1 ,2 ]
机构
[1] Natl Univ Ireland, Lambe Inst Translat Res, Galway H91 TK33, Ireland
[2] Galway Univ Hosp, Dept Surg, Galway H91 YR71, Ireland
[3] Univ Limerick, Dept Math & Stat, Limerick V94 T9PX, Ireland
[4] Univ Limerick, Sch Med, Limerick V94 T9PX, Ireland
[5] Galway Univ Hosp, Dept Med Oncol, Galway H91 YR71, Ireland
来源
JOURNAL OF PERSONALIZED MEDICINE | 2022年 / 12卷 / 07期
关键词
breast cancer; genomics; personalized medicine; surgical oncology; INTERNATIONAL CONSENSUS GUIDELINES; BREAST-CANCER RECURRENCE; MOLECULAR PORTRAITS; CLINICAL-PRACTICE; PRIMARY THERAPY; DX; ASSAY; IMPACT; POPULATION; EXPERIENCE;
D O I
10.3390/jpm12071117
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: OncotypeDX Recurrence Score(C) (RS) is a commercially available 21-gene expression assay which estimates prognosis and guides chemoendocrine prescription in early-stage estrogen-receptor positive, human epidermal growth factor receptor-2-negative (ER+/HER2-) breast cancer. Limitations of RS testing include the cost and turnaround time of several weeks. Aim: Our aim is to develop a user-friendly surrogate nomogram capable of predicting RS. Methods: Multivariable linear regression analyses were performed to determine predictors of RS and RS > 25. Receiver operating characteristic analysis produced an area under the curve (AUC) for each model, with training and test sets were composed of 70.3% (n = 315) and 29.7% (n = 133). A dynamic, user-friendly nomogram was built to predict RS using R (version 4.0.3). Results: 448 consecutive patients who underwent RS testing were included (median age: 58 years). Using multivariable regression analyses, postmenopausal status (beta-Coefficient: 0.25, 95% confidence intervals (CIs): 0.03-0.48, p = 0.028), grade 3 disease (beta-Coefficient: 0.28, 95% CIs: 0.03-0.52, p = 0.026), and estrogen receptor (ER) score (beta-Coefficient: -0.14, 95% CIs: -0.22--0.06, p = 0.001) all independently predicted RS, with AUC of 0.719. Using multivariable regression analyses, grade 3 disease (odds ratio (OR): 5.67, 95% CIs: 1.32-40.00, p = 0.037), decreased ER score (OR: 1.33, 95% CIs: 1.02-1.66, p = 0.050) and decreased progesterone receptor score (OR: 1.16, 95% CIs: 1.06-1.25, p = 0.002) all independently predicted RS > 25, with AUC of 0.740 for the static and dynamic online nomogram model. Conclusions: This study designed and validated an online user-friendly nomogram from routinely available clinicopathological parameters capable of predicting outcomes of the 21-gene RS expression assay.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] OncotypeDX Recurrence Score Does Not Predict Nodal Burden in Clinically Node Negative Breast Cancer Patients
    Tevis, S. E.
    Bassett, R.
    Bedrosian, I.
    Barcenas, C. H.
    Black, D. M.
    Caudle, A. S.
    DeSnyder, S. M.
    Fitzsullivan, E.
    Hunt, K. K.
    Kuerer, H. M.
    Lucci, A.
    Meric-Bernstam, F.
    Mittendorf, E. A.
    Park, K.
    Teshome, M.
    Thompson, A. M.
    Hwang, R. F.
    ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (03) : 815 - 820
  • [32] OncotypeDX Recurrence Score Does Not Predict Nodal Burden in Clinically Node Negative Breast Cancer Patients
    S. E. Tevis
    R. Bassett
    I. Bedrosian
    C. H. Barcenas
    D. M. Black
    A. S. Caudle
    S. M. DeSnyder
    E. Fitzsullivan
    K. K. Hunt
    H. M. Kuerer
    A. Lucci
    F. Meric-Bernstam
    E. A. Mittendorf
    K. Park
    M. Teshome
    A. M. Thompson
    R. F. Hwang
    Annals of Surgical Oncology, 2019, 26 : 815 - 820
  • [33] Clinical Use of OncotypeDX Recurrence Score as an Adjuvant-Treatment Decision Tool in Early Breast Cancer Patients
    Markopoulos, C.
    Xepapadakis, G.
    Venizelos, V.
    Tsiftsoglou, A.
    Misitzis, J.
    Panoussis, D.
    Antonopoulou, Z.
    Stathoulopoulou, M.
    Zobolas, V.
    Gogas, H.
    EUROPEAN JOURNAL OF CANCER, 2011, 47 : S379 - S379
  • [34] A novel nomogram for predicting locoregional recurrence risk in breast cancer patients treated with neoadjuvant chemotherapy and mastectomy
    Huang, Zhou
    Shi, Mei
    Wang, Wei-Hu
    Shen, Liang-Fang
    Tang, Yu
    Rong, Qing-Lin
    Zhu, Li
    Huang, Xiao-Bo
    Tie, Jian
    Chen, Jia-Yi
    Zhang, Jun
    Wu, Hong-Fen
    Cheng, Jing
    Liu, Min
    Ma, Chang-Ying
    Wang, Shu-Lian
    Li, Ye-Xiong
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : 191 - 197
  • [35] A Nomogram Model for Predicting the Postoperative Recurrence of Localized Laryngeal Amyloidosis
    Mao, Meiling
    Liang, Na
    Ren, Ran
    Zhao, Yihua
    Ma, Donglin
    Liu, Honggang
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2023, 132 (03): : 259 - 265
  • [36] A nomogram for predicting recurrence of primary hepatocellular carcinoma after resection
    Dai, Yunlong
    Feng, Qingbo
    Huang, Jiwei
    JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2023, 14 (04) : 1900 - 1901
  • [37] Development of a Nomogram Predicting the Risk of Persistence/Recurrence of Cervical Dysplasia
    Bogani, Giorgio
    Lalli, Luca
    Sopracordevole, Francesco
    Ciavattini, Andrea
    Ghelardi, Alessandro
    Simoncini, Tommaso
    Plotti, Francesco
    Casarin, Jvan
    Serati, Maurizio
    Pinelli, Ciro
    Bergamini, Alice
    Gardella, Barbara
    Dell'Acqua, Andrea
    Monti, Ermelinda
    Vercellini, Paolo
    Palaia, Innocenza
    Perniola, Giorgia
    Fischetti, Margherita
    Santangelo, Giusi
    Fracassi, Alice
    D'Ippolito, Giovanni
    Aguzzoli, Lorenzo
    Mandato, Vincenzo Dario
    Giannella, Luca
    Scaffa, Cono
    Falcone, Francesca
    Borghi, Chiara
    Malzoni, Mario
    Giannini, Andrea
    Salerno, Maria Giovanna
    Liberale, Viola
    Contino, Biagio
    Donfrancesco, Cristina
    Desiato, Michele
    Perrone, Anna Myriam
    Dondi, Giulia
    De Iaco, Pierandrea
    Ferrero, Simone
    Sarpietro, Giuseppe
    Matarazzo, Maria G.
    Cianci, Antonio
    Cianci, Stefano
    Bosio, Sara
    Ruisi, Simona
    Mosca, Lavinia
    Tinelli, Raffaele
    De Vincenzo, Rosa
    Zannoni, Gian Franco
    Ferrandina, Gabriella
    Petrillo, Marco
    VACCINES, 2022, 10 (04)
  • [38] Combining Nomogram and Microarray Data for Predicting Prostate Cancer Recurrence
    Sun, Yijun
    Cai, Yunpeng
    Goodison, Steve
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 260 - +
  • [39] Predicting recurrence of syncope: a simplified risk score
    Aydin, M.
    Mortensen, K.
    Steinig, T.
    Kretzschmar, C.
    Ventura, R.
    Meinertz, T.
    Schuchert, A.
    Maas, R.
    EUROPEAN HEART JOURNAL, 2006, 27 : 188 - 188
  • [40] A novel nomogram predicting the early recurrence of hepatocellular carcinoma patients after R0 resection
    Wang, Huanhuan
    Liu, Runkun
    Mo, Huanye
    Li, Runtian
    Lian, Jie
    Liu, Qingguang
    Han, Shaoshan
    FRONTIERS IN ONCOLOGY, 2023, 13