Mild Solution for the Time-Fractional Navier-Stokes Equation Incorporating MHD Effects

被引:15
|
作者
Shafqat, Ramsha [1 ]
Niazi, Azmat Ullah Khan [1 ]
Yavuz, Mehmet [2 ]
Jeelani, Mdi Begum [3 ]
Saleem, Kiran [1 ]
机构
[1] Univ Lahore, Dept Math & Stat, Sargodha 40100, Pakistan
[2] Necmettin Erbakan Univ, Fac Sci, Dept Math & Comp Sci, TR-42090 Konya, Turkey
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13314, Saudi Arabia
关键词
Navier-Stokes equations; mild solution; existence and uniqueness; Caputo fractional derivative; Mittag-Leffler functions; regularity;
D O I
10.3390/fractalfract6100580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Navier-Stokes (NS) equations involving MHD effects with time-fractional derivatives are discussed in this paper. This paper investigates the local and global existence and uniqueness of the mild solution to the NS equations for the time fractional differential operator. In addition, we work on the regularity effects of such types of equations which are caused by MHD flow.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Error Estimates of Mixed Finite Element Methods for Time-Fractional Navier-Stokes Equations
    Li, Xiaocui
    Yang, Xiaoyuan
    Zhang, Yinghan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) : 500 - 515
  • [42] Fuzzy time-fractional advection-dispersion and Navier-Stokes equations: A comprehensive approach
    Hashemi, H.
    Ezzati, R.
    Mikaeilvand, N.
    Nazari, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2024, 21 (05): : 105 - 119
  • [43] STABILITY OF A PERIODIC SOLUTION OF NAVIER-STOKES EQUATION
    ZENKOVSK.SM
    JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1967, 31 (01): : 130 - &
  • [44] Approximation of the solution of the stochastic Navier-Stokes equation
    Breckner, H
    OPTIMIZATION, 2001, 49 (1-2) : 15 - 38
  • [45] Analysis and Numerical Computations of the Multi-Dimensional, Time-Fractional Model of Navier-Stokes Equation with a New Integral Transformation
    Chu, Yuming
    Rashid, Saima
    Kubra, Khadija Tul
    Inc, Mustafa
    Hammouch, Zakia
    Osman, M. S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (03): : 3025 - 3060
  • [46] Meshfree methods for the time fractional Navier-Stokes
    Liu, Yan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 166
  • [47] A unique approach for solving the fractional Navier-Stokes equation
    Zayir, Muslim Yousif
    Jassim, Hassan Kamil
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (08) : 2611 - 2616
  • [48] Formulas for Drag Coefficient and the Navier-Stokes Fractional Equation
    Roberto Mercado, Jose
    Guido, Pedro
    Sanchez-Sesma, Jorge
    Iniguez, Mauro
    TECNOLOGIA Y CIENCIAS DEL AGUA, 2014, 5 (02) : 149 - 160
  • [49] Probabilistic representation for mild solution of the Navier-Stokes equations
    Olivera, Christian
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (02) : 563 - 573
  • [50] Approximation of a Solution to the Euler Equation by Solutions of the Navier-Stokes Equation
    Neustupa, Jiri
    Penel, Patrick
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (01) : 179 - 196