Intramolecular charge-transfer enhances energy transfer efficiency in carotenoid-reconstituted light-harvesting 1 complex of purple photosynthetic bacteria

被引:7
|
作者
Yukihira, Nao [1 ]
Uragami, Chiasa [1 ]
Horiuchi, Kota [1 ]
Kosumi, Daisuke [2 ]
Gardiner, Alastair T. [3 ]
Cogdell, Richard J. [4 ]
Hashimoto, Hideki [1 ]
机构
[1] Kwansei Gakuin Univ, Grad Sch Sci & Technol, Dept Appl Chem Environm, 1 Gakuen Uegahara, Sanda, Hyogo 6691330, Japan
[2] Kumamoto Univ, Inst Ind Nanomat, Chuou Ku, 2-39-1 Kurokami, Kumamoto 8608555, Japan
[3] Czech Acad Sci, Inst Microbiol, Lab Anoxygen Phototrophs, Trebon 37981, Czech Republic
[4] Univ Glasgow, Coll Med Vet & Life Sci, Inst Mol Cell & Syst Biol, Glasgow G12 8QQ, Lanark, Scotland
关键词
RHODOSPIRILLUM-RUBRUM S1; EXCITED-STATE DYNAMICS; CHLOROPHYLL-A-PROTEIN; ANTENNA COMPLEX; LH1; COMPLEX; ABSORPTION-SPECTROSCOPY; TRANSIENT ABSORPTION; ULTRAFAST DYNAMICS; TRIPLET CONVERSION; SOLVENT POLARITY;
D O I
10.1038/s42004-022-00749-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In bacterial photosynthesis, the excitation energy transfer (EET) from carotenoids to bacteriochlorophyll a has a significant impact on the overall efficiency of the primary photosynthetic process. This efficiency can be enhanced when the involved carotenoid has intramolecular charge-transfer (ICT) character, as found in light-harvesting systems of marine alga and diatoms. Here, we provide insights into the significance of ICT excited states following the incorporation of a higher plant carotenoid, beta-apo-8'-carotenal, into the carotenoidless light-harvesting 1 (LH1) complex of the purple photosynthetic bacterium Rhodospirillum rubrum strain G9+. beta-apo-8'-carotenal generates the ICT excited state in the reconstituted LH1 complex, achieving an efficiency of EET of up to 79%, which exceeds that found in the wild-type LH1 complex.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting
    Beck, Warren F.
    PHOTOSYNTHESIS RESEARCH, 2024, 162 (2-3) : 139 - 156
  • [32] Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes
    Akhtar, Parveen
    Lingvay, Monika
    Kiss, Terez
    Deak, Robert
    Bota, Attila
    Ughy, Bettina
    Garab, Gyozo
    Lambrev, Petar H.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (04): : 462 - 472
  • [33] Disentangling energy transfer dynamics in photosynthetic light-harvesting antennae.
    Scholes, GD
    Fleming, GR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U285 - U285
  • [34] NATURAL-SELECTION OF CAROTENOID CONFIGURATIONS BY THE REACTION CENTER AND THE LIGHT-HARVESTING COMPLEX OF PHOTOSYNTHETIC BACTERIA
    KOYAMA, Y
    CAROTENOIDS: CHEMISTRY AND BIOLOGY, 1989, : 207 - 222
  • [35] Efficient estimation of energy transfer efficiency in light-harvesting complexes
    Shabani, A.
    Mohseni, M.
    Rabitz, H.
    Lloyd, S.
    PHYSICAL REVIEW E, 2012, 86 (01)
  • [36] Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria
    Gall, Andrew
    Sogaila, Egidijus
    Gulbinas, Vidmantas
    Ilioaia, Oana
    Robert, Bruno
    Valkunas, Leonas
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (08): : 1465 - 1469
  • [37] Rapid excitation-energy transfer to optically forbidden states in light-harvesting antennas of photosynthetic bacteria
    Mukai, K
    Abe, S
    Sumi, H
    JOURNAL OF LUMINESCENCE, 2000, 87-9 : 818 - 820
  • [38] Dynamics of excitation energy transfer in the LH1 and LH2 light-harvesting complexes of photosynthetic bacteria
    van Grondelle, R
    Novoderezhkin, V
    BIOCHEMISTRY, 2001, 40 (50) : 15057 - 15068
  • [39] ENERGY-TRANSFER FROM CAROTENOID POLYENES TO PORPHYRINS - A LIGHT-HARVESTING ANTENNA
    MOORE, AL
    DIRKS, G
    GUST, D
    MOORE, TA
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1980, 32 (05) : 691 - 695
  • [40] Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs
    Son, Minjung
    Pinnola, Alberta
    Gordon, Samuel C.
    Bassi, Roberto
    Schlau-Cohen, Gabriela S.
    NATURE COMMUNICATIONS, 2020, 11 (01)