A discrete variant of Farkas' lemma and related results

被引:0
|
作者
Bartl, David [1 ]
机构
[1] Silesian Univ Opava, Sch Business Adm Karvina, Dept Informat & Math, Karvina, Czech Republic
关键词
Farkas' lemma; systems of linear inequalities; theorems of the alternative; Motzkin's transposition theorem; Tucker's transposition theorem; 3; DECADES; GENERALIZED HALFSPACES; ALGEBRAIC PROOF;
D O I
10.1080/02331934.2020.1768535
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We generalize Farkas' lemma to the setting of a module over a linearly ordered commutative ring. We prove the result in full generality in a purely linear-algebraic way, without making any additional hypothesis about the ring, which may even contain zero divisors. We also present some related results in the new discrete setting (Tucker's key theorem, Motzkin's transposition theorem and Tucker's transposition theorem). Finally, we briefly discuss some of the possible applications of the results and we raise several questions for further research.
引用
收藏
页码:2031 / 2060
页数:30
相关论文
共 50 条
  • [31] Lyapunov Function Synthesis - Infeasibility and Farkas' Lemma
    Leth, Tobias
    Sloth, Christoffer
    Wisniewski, Rafal
    Sankaranarayanan, Sriram
    IFAC PAPERSONLINE, 2017, 50 (01): : 1667 - 1672
  • [32] A note on the short algebraic proof of Farkas' Lemma
    Bartl, David
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (08): : 897 - 901
  • [33] A Farkas lemma without a standard closure condition
    Lasserre, JB
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (01) : 265 - 272
  • [34] Farkas’ Lemma in the bilinear setting and evaluation functionals
    Richard Aron
    Domingo García
    Damián Pinasco
    Ignacio Zalduendo
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [35] Scalable Linear Invariant Generation with Farkas' Lemma
    Liu, Hongming
    Fu, Hongfei
    Yu, Zhiyong
    Song, Jiaxin
    Li, Guoqiang
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2022, 6 (OOPSLA):
  • [36] On Farkas lemma and dimensional rigidity of bar frameworks
    Alfakih, A. Y.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 504 - 522
  • [38] Green's lemma and related results
    Reid, WT
    AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 : 563 - 574
  • [39] Farkas' lemma for separable sublinear inequalities without qualifications
    Jeyakumar, V.
    Li, G. Y.
    OPTIMIZATION LETTERS, 2009, 3 (04) : 537 - 545
  • [40] TOPOLOGICAL SCHUR LEMMA AND RELATED RESULTS
    CHANG, T
    SKJELBRE.T
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05) : 1036 - 1038