Intermittency in flux driven kinetic simulations of trapped ion turbulence

被引:22
|
作者
Darmet, G. [1 ]
Ghendrih, Ph. [1 ]
Sarazin, Y. [1 ]
Garbet, X. [1 ]
Grandgirard, V. [1 ]
机构
[1] CEA Cadarache, CEA DSM DRFC, EURATOM Assoc, F-13108 St Paul Les Durance, France
关键词
gyrokinetics; flux-driven simulation; interchange instability; turbulent transport; zonal flows;
D O I
10.1016/j.cnsns.2007.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Flux driven kinetic transport is analysed for deeply trapped ion turbulence with the code GYSELA. The main observation is the existence of a steady state situation with respect to the statistics, in particular the balance between the injected energy and the time averaged energy flowing out through the outer edge boundary layer. The temperature is characterised by a very bursty behaviour with a skewed PDF. Superimposed to these short time scale fluctuations, one finds a regime with a strong increase of the zonal flows and a quenching of the turbulent energy. During this phase of such a predator-prey cycle, the core temperature rapidly increases while the edge temperature gradually decreases. The end of this reduced transport regime is governed by the onset of turbulence that governs large relaxation events, and a strong modification of the zonal flow pattern. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [41] Large-scale intermittency in two-dimensional driven turbulence
    Jun, YG
    Wu, XL
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [42] Kinetic simulations of magnetized turbulence in astrophysical plasmas
    Howes, G. G.
    Dorland, W.
    Cowley, S. C.
    Hammett, G. W.
    Quataert, E.
    Schekochihin, A. A.
    Tatsuno, T.
    PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [43] Gyrokinetic turbulence Simulations with fully kinetic electrons
    Chen, Y
    Jones, ST
    Parker, SE
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (01) : 74 - 75
  • [44] A simple model for electron dissipation in trapped ion turbulence
    Lesur, M.
    Cartier-Michaud, T.
    Drouot, T.
    Diamond, P. H.
    Kosuga, Y.
    Reveille, T.
    Gravier, E.
    Garbet, X.
    Itoh, S. -I.
    Itoh, K.
    PHYSICS OF PLASMAS, 2017, 24 (01)
  • [45] Wavevector anisotropy of plasma turbulence at ion kinetic scales: solar wind observations and hybrid simulations
    Comisel, H.
    Narita, Y.
    Motschmann, U.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (06) : 1075 - 1083
  • [46] Multifractal scaling and intermittency in hybrid Vlasov-Maxwell simulations of plasma turbulence
    Leonardis, E.
    Sorriso-Valvo, L.
    Valentini, F.
    Servidio, S.
    Carbone, F.
    Veltri, P.
    PHYSICS OF PLASMAS, 2016, 23 (02)
  • [47] Flux-driven gyrokinetic simulations of ion turbulent transport at low magnetic shear
    Sarazin, Y.
    Strugarek, A.
    Dif-Pradalier, G.
    Abiteboul, J.
    Allfrey, S.
    Garbet, X.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    THEORY OF FUSION PLASMAS: JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP, 2010, 260
  • [48] SATURATION LEVELS OF HEAT-FLUX-DRIVEN AND FAST-ELECTRON-DRIVEN ION-ACOUSTIC-WAVE TURBULENCE
    BARR, HC
    BOYD, TJM
    PHYSICAL REVIEW A, 1981, 24 (04): : 2084 - 2088
  • [49] NUMERICAL SIMULATIONS OF DRIVEN RELATIVISTIC MAGNETOHYDRODYNAMIC TURBULENCE
    Zrake, Jonathan
    MacFadyen, Andrew I.
    ASTROPHYSICAL JOURNAL, 2012, 744 (01):
  • [50] Kinetic driven turbulence: Structure in space and time
    Parashar, T. N.
    Servidio, S.
    Breech, B.
    Shay, M. A.
    Matthaeus, W. H.
    PHYSICS OF PLASMAS, 2010, 17 (10)