Onset of chaotic advection in open flows

被引:10
|
作者
Biemond, J. J. Benjamin [1 ]
de Moura, Alessandro P. S. [2 ]
Karolyi, Gyoergy [2 ]
Grebogi, Celso [2 ]
Nijmeijer, Henk [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Aberdeen, Univ London Kings Coll, Coll Phys Sci, Aberdeen AB24 3UE, Scotland
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1103/PhysRevE.78.016317
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we investigate the transition to chaos in the motion of particles advected by open flows with obstacles. By means of a topological argument, we show that the separation points on the surface of the obstacle imply the existence of a saddle point downstream from the obstacle, with an associated heteroclinic orbit. We argue that as soon as the flow becomes time periodic, these orbits give rise to heteroclinic tangles, causing passively advected particles to experience transient chaos. The transition to chaos thus coincides with the onset of time dependence in open flows with stagnant points, in contrast with flows with no stagnant points. We also show that the nonhyperbolic nature of the dynamics near the walls causes anomalous scalings in the vicinity of the transition. These results are confirmed by numerical simulations of the two-dimensional flow around a cylinder.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Chaotic advection and transport in helical Beltrami flows: a Hamiltonian system with anomalous diffusion
    Agullo, O.
    Verga, A.D.
    Zaslavsky, G.M.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 55 (5 -A pt A): : 5587 - 5596
  • [32] Fractal structures in the chaotic advection of passive scalars in leaky planar hydrodynamical flows
    Viana, Ricardo L.
    Mathias, Amanda C.
    Souza, Leonardo C.
    Haerter, Pedro
    CHAOS, 2024, 34 (05)
  • [33] Chaotic advection and transport in helical Beltrami flows: A Hamiltonian system with anomalous diffusion
    Agullo, O
    Verga, AD
    Zaslavsky, GM
    PHYSICAL REVIEW E, 1997, 55 (05): : 5587 - 5596
  • [34] Anticontrol of chaotic advection
    Crispin, Y
    THIRD INTERNATIONAL CONFERENCE ON NONLINEAR PROBLEMS IN AVIATION AND AEROSPACE, VOLS 1 AND 2, PROCEEDINGS, 2002, : 199 - 207
  • [35] CHAOTIC ADVECTION IN PERSPECTIVE
    AREF, H
    CHAOS SOLITONS & FRACTALS, 1994, 4 (06) : 745 - 748
  • [36] STIRRING BY CHAOTIC ADVECTION
    AREF, H
    JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) : 1 - 21
  • [37] Chaotic advection in the ocean
    Koshel, K. V.
    Prants, S. V.
    PHYSICS-USPEKHI, 2006, 49 (11) : 1151 - 1178
  • [38] Frontiers of chaotic advection
    Aref, Hassan
    Blake, John R.
    Budisic, Marko
    Cardoso, Silvana S. S.
    Cartwright, Julyan H. E.
    Clercx, Herman J. H.
    El Omari, Kamal
    Feudel, Ulrike
    Golestanian, Ramin
    Gouillart, Emmanuelle
    van Heijst, GertJan F.
    Krasnopolskaya, Tatyana S.
    Le Guer, Yves
    MacKay, Robert S.
    Meleshko, Vyacheslav V.
    Metcalfe, Guy
    Mezic, Igor
    de Moura, Alessandro P. S.
    Piro, Oreste
    Speetjens, Michel F. M.
    Sturman, Rob
    Thiffeault, Jean-Luc
    Tuval, Idan
    REVIEWS OF MODERN PHYSICS, 2017, 89 (02)
  • [39] The development of chaotic advection
    Aref, H
    PHYSICS OF FLUIDS, 2002, 14 (04) : 1315 - 1325
  • [40] CHAOTIC ADVECTION AND DISPERSION
    JONES, SW
    PHYSICA D, 1994, 76 (1-3): : 55 - 69