Theory of topological Kondo insulators

被引:212
|
作者
Dzero, Maxim [1 ]
Sun, Kai [2 ]
Coleman, Piers [3 ,4 ]
Galitski, Victor [2 ]
机构
[1] Kent State Univ, Dept Phys, Kent, OH 44242 USA
[2] Univ Maryland, Joint Quantum Inst & Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA
[3] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA
[4] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
基金
美国国家科学基金会;
关键词
SURFACE-STATES; GAP; EXCITATIONS; VALENCE;
D O I
10.1103/PhysRevB.85.045130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine how the properties of the Kondo insulators change when the symmetry of the underlying crystal field multiplets is taken into account. We employ the Anderson lattice model and consider its low-energy physics. We show that in a large class of crystal field configurations, Kondo insulators can develop a topological nontrivial ground state. Such topological Kondo insulators are adiabatically connected to noninteracting insulators with unphysically large spin-orbit coupling, and as such may be regarded as interaction-driven topological insulators. We analyze the entanglement entropy of the Anderson lattice model of Kondo insulators by evaluating its entanglement spectrum. Our results for the entanglement spectrum are consistent with the surface state calculations. Last, we discuss the construction of the maximally localized Wannier wave functions for generic Kondo insulators.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Kondo insulators
    Florida State Univ, Tallahassee, United States
    Phys B Condens Matter, 1-4 (409-412):
  • [42] Kondo insulators
    Fisk, Z.
    Sarrao, J. L.
    Thompson, J. D.
    Mandrus, D.
    Hundley, M. F.
    Miglori, A.
    Bucher, B.
    Schlesinger, Z.
    Aeppli, G.
    Bucher, E.
    DiTusa, J. F.
    Oglesby, C. S.
    Ott, H-R.
    Canfield, P. C.
    Brown, S. E.
    PHYSICA B-CONDENSED MATTER, 1995, 206 : 798 - 803
  • [43] Scattering theory of delicate topological insulators
    Zhu, Penghao
    Noh, Jiho
    Liu, Yingkai
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [44] On mathematical problems in the theory of topological insulators
    A. G. Sergeev
    Theoretical and Mathematical Physics, 2021, 208 : 1144 - 1155
  • [45] Kondo insulators
    Fisk, Z.
    Sarrao, J.L.
    Thompson, J.D.
    Mandrus, D.
    Hundley, M.F.
    Miglori, A.
    Bucher, B.
    Schlesinger, Z.
    Aeppli, G.
    Bucher, E.
    DiTusa, J.F.
    Oglesby, C.S.
    Ott, H.-R.
    Canfield, P.C.
    Brown, S.E.
    Physica B: Condensed Matter, 1995, 206-207 (1-4): : 798 - 803
  • [46] On Mathematical Aspects of the Theory of Topological Insulators
    Maresin, Innocenti
    Sergeev, Armen
    Teplyakov, Egor
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (01) : 81 - 106
  • [47] Topological Anderson insulators by homogenization theory
    Bal, Guillaume
    Dang, Thuyen
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (10-12) : 989 - 1010
  • [48] Theory of interacting topological crystalline insulators
    Isobe, Hiroki
    Fu, Liang
    PHYSICAL REVIEW B, 2015, 92 (08)
  • [49] Scattering theory of topological insulators and superconductors
    Fulga, I. C.
    Hassler, F.
    Akhmerov, A. R.
    PHYSICAL REVIEW B, 2012, 85 (16)
  • [50] ON MATHEMATICAL PROBLEMS IN THE THEORY OF TOPOLOGICAL INSULATORS
    Sergeev, A. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1144 - 1155