Multi-agent Reinforcement Learning for Traffic Signal Control

被引:0
|
作者
Prabuchandran, K. J. [1 ]
Kumar, Hemanth A. N. [1 ]
Bhatnagar, Shalabh [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
来源
2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) | 2014年
关键词
traffic signal control; multi-agent reinforcement learning; Q-learning; UCB; VISSIM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB [3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm [15] over two real road networks.
引用
收藏
页码:2529 / 2534
页数:6
相关论文
共 50 条
  • [31] Multi-Agent Meta-Reinforcement Learning with Coordination and Reward Shaping for Traffic Signal Control
    Du, Xin
    Wang, Jiahai
    Chen, Siyuan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 349 - 360
  • [32] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Qiao, Zhimin
    Ke, Liangjun
    Wang, Xiaoqiang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4483 - 4498
  • [33] Multi-agent broad reinforcement learning for intelligent traffic light control
    Zhu, Ruijie
    Li, Lulu
    Wu, Shuning
    Lv, Pei
    Li, Yafei
    Xu, Mingliang
    INFORMATION SCIENCES, 2023, 619 : 509 - 525
  • [34] Multi-agent Deep Reinforcement Learning collaborative Traffic Signal Control method considering intersection heterogeneity
    Bie, Yiming
    Ji, Yuting
    Ma, Dongfang
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 164
  • [35] Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
    Yisha Li
    Ya Zhang
    Xinde Li
    Changyin Sun
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (09) : 1987 - 1998
  • [36] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658
  • [37] Fairness-aware multi-agent reinforcement learning and visual perception for adaptive traffic signal control
    FANG Wanqing
    ZHAO Xintian
    ZHANG Chengwei
    Optoelectronics Letters, 2024, 20 (12) : 764 - 768
  • [38] Multi-agent Deep Reinforcement Learning with Spatio-Temporal Feature Fusion for Traffic Signal Control
    Du, Xin
    Wang, Jiahai
    Chen, Siyuan
    Liu, Zhiyue
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 470 - 485
  • [39] Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning
    Li, Zhenning
    Yu, Hao
    Zhang, Guohui
    Dong, Shangjia
    Xu, Cheng-Zhong
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125
  • [40] Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
    Li, Yisha
    Zhang, Ya
    Li, Xinde
    Sun, Changyin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (09) : 1987 - 1998