Scaling laws in the diffusion limited aggregation of persistent random walkers

被引:12
|
作者
Nogueira, Isadora R. [2 ]
Alves, Sidiney G. [1 ]
Ferreira, Silvio C. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Sao Joao Del Rei, BR-36420000 Ouro Branco, MG, Brazil
关键词
Diffusion limited aggregation; Random walks; Fractals; Scaling laws; KINETIC CRITICAL PHENOMENON; BALLISTIC DEPOSITION; HARMONIC MEASURE; DIMENSIONS; MODEL; MOVEMENT; SIZE;
D O I
10.1016/j.physa.2011.06.077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the diffusion limited aggregation of particles executing persistent random walks. The scaling properties of both random walks and large aggregates are presented. The aggregates exhibit a crossover between ballistic and diffusion limited aggregation models. A non-trivial scaling relation E e "5 between the characteristic size in which the cluster undergoes a morphological transition, and the persistence length e, between ballistic and diffusive regimes of the random walk, is observed. 0 2011 Elsevier BM. All rights reserved.
引用
收藏
页码:4087 / 4094
页数:8
相关论文
共 50 条
  • [31] Network formation determined by the diffusion process of random walkers
    Ikeda, Nobutoshi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [32] Averaging dynamics, mortal random walkers and information aggregation on graphs
    Sikder, Orowa
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (04):
  • [33] Jamming of multiple persistent random walkers in arbitrary spatial dimension
    Metson, M. J.
    Evans, M. R.
    Blythe, R. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (10):
  • [34] Scaling and crossovers in diffusion aggregation
    Somfai, E
    Sander, LM
    Ball, RC
    PHYSICAL REVIEW LETTERS, 1999, 83 (26) : 5523 - 5526
  • [35] SCALING STRUCTURE OF THE GROWTH-PROBABILITY DISTRIBUTION IN DIFFUSION-LIMITED AGGREGATION PROCESSES
    HAYAKAWA, Y
    SATO, S
    MATSUSHITA, M
    PHYSICAL REVIEW A, 1987, 36 (04): : 1963 - 1966
  • [36] Towards scaling laws in random polycrystals
    Ranganathan, Shivakumar I.
    Ostoja-Starzewski, Martin
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2009, 47 (11-12) : 1322 - 1330
  • [37] Scaling laws in random heterogeneous networks
    Reznik, A
    Kulkarni, SR
    Verdú, S
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 369 - 369
  • [38] TWO-DIMENSIONAL DIFFUSION LIMITED AGGREGATION - A FINITE-SIZE SCALING APPROACH
    TURBAN, L
    DEBIERRE, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (05): : L289 - L293
  • [39] URBAN-GROWTH AND FORM - SCALING, FRACTAL GEOMETRY, AND DIFFUSION-LIMITED AGGREGATION
    BATTY, M
    LONGLEY, P
    FOTHERINGHAM, S
    ENVIRONMENT AND PLANNING A, 1989, 21 (11) : 1447 - 1472
  • [40] Repelling random walkers in a diffusion-coalescence system
    Jafarpour, F. H.
    Masharian, S. R.
    PHYSICAL REVIEW E, 2008, 77 (03):