MOTION OF SEVERAL SLENDER RIGID FILAMENTS IN A STOKES FLOW

被引:2
|
作者
Hofer, Richard M. [1 ]
Prange, Christophe [2 ]
Sueur, Franck [3 ,4 ]
机构
[1] Univ Paris, Inst Math Jussieu Paris Rive Gauche, 8 Pl Aurelie Nemours, F-75205 Paris 13, France
[2] Cergy Paris Univ, Lab Math AGM, PRANGE, UMR CNRS 8088, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise, France
[3] Univ Bordeaux, Inst Math Bordeaux, UMR CNRS 5251, 351 Cours Liberat, F-33405 Talence, France
[4] Inst Univ France, Paris, France
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
Slender rigid body; steady Stokes flow; fluid-solid interaction; singular perturbation; BODY THEORY; PARTICLES; OPERATOR;
D O I
10.5802/jep.184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of several slender rigid bodies moving in a flow driven by the three-dimensional steady Stokes system in presence of a smooth background flow. More precisely, we consider the limit where the thickness of these slender rigid bodies tends to zero with a common rate epsilon, while their volumetric mass density is held fixed, so that the bodies shrink into separated massless curves. While for each positive epsilon, the bodies' dynamics are given by the Newton equations and correspond to some coupled second-order ODEs for the positions of the bodies, we prove that the limit equations are decoupled first-order ODEs whose coefficients only depend on the limit curves and on the background flow. We also determine the limit effect due to the limit curves on the fluid, in the spirit of the immersed boundary method.
引用
收藏
页码:327 / 380
页数:55
相关论文
共 50 条
  • [31] AN IMPROVED SLENDER-BODY THEORY FOR STOKES-FLOW
    JOHNSON, RE
    JOURNAL OF FLUID MECHANICS, 1980, 99 (JUL) : 411 - 431
  • [32] Simplified model for the study of the asymmetric rocking motion of slender rigid bodies
    Pena, F.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2015, 31 (01): : 1 - 7
  • [33] MOTION OF A RIGID CYLINDER BETWEEN PARALLEL PLATES IN STOKES-FLOW .2. POISEUILLE AND COUETTE-FLOW
    DVINSKY, AS
    POPEL, AS
    COMPUTERS & FLUIDS, 1987, 15 (04) : 405 - 419
  • [34] MOTION OF A DEFORMED DROP IN STOKES FLOW
    MATUNOBU, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1966, 21 (08) : 1596 - &
  • [35] On the motion of linked spheres in a Stokes flow
    Box, F.
    Han, E.
    Tipton, C. R.
    Mullin, T.
    EXPERIMENTS IN FLUIDS, 2017, 58 (04)
  • [36] On the motion of linked spheres in a Stokes flow
    F. Box
    E. Han
    C. R. Tipton
    T. Mullin
    Experiments in Fluids, 2017, 58
  • [37] The Steady Motion of a Navier–Stokes Liquid Around a Rigid Body
    Giovanni P. Galdi
    Ana L. Silvestre
    Archive for Rational Mechanics and Analysis, 2007, 184 : 371 - 400
  • [38] Stokes-flow sedimentation of a slender-filament helical coil
    Kim, Youn-jea
    Rae, William J.
    PCH. Physicochemical hydrodynamics, 1989, 11 (03): : 295 - 314
  • [39] A note on the S-transform and slender body theory in Stokes flow
    Blake, J. R.
    Tuck, E. O.
    Wakeley, P. W.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (03) : 343 - 355
  • [40] NAVIER-STOKES SOLVER FOR HYPERSONIC FLOW OVER A SLENDER CONE
    TAI, CS
    KAO, AF
    JOURNAL OF SPACECRAFT AND ROCKETS, 1994, 31 (02) : 215 - 222