Topological structure of complete Riemannian manifolds with cyclic holonomy groups

被引:1
|
作者
Sadowski, M [1 ]
机构
[1] Univ Gdansk, Dept Math, PL-80952 Gdansk, Poland
关键词
complete flat manifold; holonomy group; topological classification;
D O I
10.1016/j.difgeo.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a complete m-dimensional Riemannian manifold with cyclic holonomy group, let X be a closed flat manifold homotopy equivalent to M, and let L -> X be a nontrivial line bundle over X whose total space is a flat manifold with cyclic holonomy group. We prove that either M is diffeomorphic to X x Rm-dim X or M is diffeomorphic to L x Rm-dim X-1. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 113
页数:8
相关论文
共 50 条
  • [41] ESSENTIAL SPECTRUM OF COMPLETE RIEMANNIAN MANIFOLDS
    陈志华
    陆志勤
    ScienceinChina,SerA., 1992, Ser.A.1992 (03) : 276 - 282
  • [42] Spectral Theory of Complete Riemannian Manifolds
    Donnelly, Harold
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (02) : 439 - 456
  • [43] Conditional extremals in complete Riemannian manifolds
    Schrader, Philip
    Noakes, Lyle
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2177 - 2188
  • [44] BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS
    Alias, Luis J.
    Carolina Garcia-Martinez, S.
    Rigoli, Marco
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 263 (01) : 1 - 12
  • [45] Spectral gaps on complete Riemannian manifolds
    Charalambous, Nelia
    Leal, Helton
    Lu, Zhiqin
    GEOMETRY OF SUBMANIFOLDS, 2020, 756 : 57 - 67
  • [46] Coeffective Numbers of Riemannian 8-Manifolds with Holonomy in Spin(7)
    Luis Ugarte
    Annals of Global Analysis and Geometry, 2001, 19 : 35 - 53
  • [47] Harmonic transforms of complete Riemannian manifolds
    Stepanov, S. E.
    Tsyganok, I. I.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 465 - 471
  • [48] A Schwarz lemma for complete Riemannian manifolds
    Cheung, LF
    Leung, PF
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (03) : 513 - 515
  • [49] Isometric immersion of complete Riemannian manifolds
    Bejan, CL
    Binh, TQ
    Tamássy, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 55 (1-2): : 211 - 219
  • [50] Compact affine manifolds with precompact holonomy are geodesically complete
    Ake Hau, Luis Alberto
    Sanchez, Miguel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1369 - 1371