An improved transformation-based kernel estimator for population abundance with shoulder condition

被引:0
|
作者
Albadareen, Baker [1 ]
Ismail, Noriszura [1 ]
Jaber, Jamil J. [1 ,2 ]
机构
[1] Univ Kebangsaan Malaysia, Dept Math Sci, Bangi, Malaysia
[2] Univ Jordan, Dept Risk Management Insurance, Aqaba, Jordan
关键词
line transect; log-transformation; kernel estimator; shoulder condition; abundance; bandwidth; IN-LINE; NONPARAMETRIC ESTIMATORS; DENSITY; BIAS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The estimation of parameter integral(X)(0), which is the probability density function at the perpendicular distance x = 0, is a common target in the line transect sampling to estimate the population abundance, D. The key assumption of the density shape in the line transect sampling is known as the shoulder condition (f(X)'(0) = 0). In this paper, we propose a log-transformation application as an adaptation of the classical kernel method to estimate the population abundance in the line transect sampling. The proposed transformation produces a simple and interpretable estimator as the usual kernel estimator while holding theoretical and practical advantages. The asymptotic properties of the proposed transformation are derived. A simulation study using the half-normal detection function is also investigated and applied using various sample sizes. Theoretical and practical results show the superior potential properties of the proposed transform estimator over the usual kernel estimator.
引用
收藏
页码:370 / 381
页数:12
相关论文
共 24 条
  • [1] An Improved Transformation-Based Kernel Estimator of Densities on the Unit Interval
    Wen, Kuangyu
    Wu, Ximing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) : 773 - 783
  • [2] A new kernel estimator for abundance using line transect sampling without the shoulder condition
    Omar M. Eidous
    Journal of the Korean Statistical Society, 2012, 41 : 267 - 275
  • [3] A new kernel estimator for abundance using line transect sampling without the shoulder condition
    Eidous, Omar M.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (02) : 267 - 275
  • [4] Improved transformation-based quantile regression
    Geraci, Marco
    Jones, M. C.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (01): : 118 - 132
  • [5] Interval estimator for uncertain descriptor systems: a block diagonal transformation-based solution
    Liu, Longwen
    Xie, Wei
    Zhang, Langwen
    ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 1271 - 1281
  • [6] Transformation-based GMM with improved cluster algorithm for speaker identification
    Xu, Limin
    Tang, Zhenmin
    He, Keke
    Qian, Bo
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 1006 - +
  • [7] Givens Orthogonal Transformation-Based Estimator Versus RLS Estimator-Case Study for an Induction Generator Model
    Filip, Ioan
    Szeidert, Iosif
    SOFT COMPUTING APPLICATIONS, (SOFA 2014), VOL 2, 2016, 357 : 1287 - 1299
  • [8] Additive histogram frequency estimator for wildlife abundance using line transect data without the shoulder condition
    Eidous O.M.
    METRON, 2011, 69 (2) : 119 - 128
  • [9] A General Base of Power Transformation to Improve the Boundary Effect in Kernel Density without Shoulder Condition
    Albadareen, Baker
    Ismail, Noriszura
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2020, 16 (02) : 279 - 285
  • [10] Kernel Minimum Noise Fraction Transformation-Based Background Separation Model for Hyperspectral Anomaly Detection
    Xue, Tianru
    Jia, Jianxin
    Xie, Hui
    Zhang, Changxing
    Deng, Xuan
    Wang, Yueming
    REMOTE SENSING, 2022, 14 (20)