Improved transformation-based quantile regression

被引:14
|
作者
Geraci, Marco [1 ]
Jones, M. C. [2 ]
机构
[1] Univ S Carolina, Dept Epidemiol & Biostat, Columbia, SC 29208 USA
[2] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
Aranda-Ordaz transformation; Box-Cox transformation; Bounded response; two-stage estimation; FAMILY;
D O I
10.1002/cjs.11240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modelling the quantiles of a random variable is facilitated by their equivariance to monotone transformations. In conditional modelling, transforming the response variable serves to approximate nonlinear relationships by means of flexible and parsimonious models; these usually include standard transformations as special cases. Transforming back to obtain predictions on the original scale or to calculate marginal nonlinear effects becomes a trivial task. This approach is particularly useful when the support of the response variable is bounded. We propose novel transformation models for singly or doubly bounded responses, which improve upon the performance of conditional quantile estimators as compared to other competing transformations, namely the Box-Cox and the Aranda-Ordaz transformations. The key is to provide flexible transformations with range the whole of the real line. Estimation is carried out by means of a two-stage estimator, while confidence intervals are obtained by bootstrap. A simulation study and some illustrative data analyses are presented. The Canadian Journal of Statistics 43: 118-132; 2015 (c) 2015 Statistical Society of Canada Resume L'equivariance aux transformations monotones des quantiles d'une variable aleatoire facilite leur modelisation. Dans le cadre d'une modelisation conditionnelle, une transformation de la variable reponse permet d'estimer des relations non lineaires a l'aide de modeles simples et parcimonieux. Les transformations envisagees incluent typiquement des transformations standards comme cas particuliers. La conversion de previsions vers l'echelle d'origine ou le calcul des effets marginaux non lineaires se font alors de facon triviale par l'application de la transformation inverse. Les auteurs proposent un modele de transformation novateur pour des reponses bornees unilateralement ou bilateralement. Les performances observees pour l'estimation conditionnelle de quantiles surpassent celles des transformations concurrentes comme la transformee de Box-Cox et celle d'Aranda-Ordaz. La cle consiste a proposer des transformations flexibles dont le domaine couvre tout l'axe reel. Les auteurs effectuent l'estimation a l'aide d'une methode en deux etapes et ils determinent les intervalles de confiance par le reechantillonnage. Ils presentent quelques simulations et des exemples d'analyse de donnees. La revue canadienne de statistique 43: 118-132; 2015 (c) 2015 Societe statistique du Canada
引用
收藏
页码:118 / 132
页数:15
相关论文
共 50 条
  • [1] Transformation-based GMM with improved cluster algorithm for speaker identification
    Xu, Limin
    Tang, Zhenmin
    He, Keke
    Qian, Bo
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 1006 - +
  • [2] An Improved Transformation-Based Kernel Estimator of Densities on the Unit Interval
    Wen, Kuangyu
    Wu, Ximing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) : 773 - 783
  • [3] Improved local quantile regression
    Liu, Xi
    Yu, Keming
    Xu, Qifa
    Tang, Xueqing
    [J]. STATISTICAL MODELLING, 2019, 19 (05) : 501 - 523
  • [4] Transformation-based estimation
    Feng, Zhenghui
    Wang, Tao
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 78 : 186 - 205
  • [5] An improved transformation-based kernel estimator for population abundance with shoulder condition
    Albadareen, Baker
    Ismail, Noriszura
    Jaber, Jamil J.
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 370 - 381
  • [6] A transformation-based optimiser for Haskell
    Jones, SLP
    Santos, ALM
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 1998, 32 (1-3) : 3 - 47
  • [7] Transformation-based spatial join
    Song, JW
    Whang, KY
    Lee, YK
    Lee, MJ
    Kim, SW
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION KNOWLEDGE MANAGEMENT, CIKM'99, 1999, : 15 - 26
  • [8] Power transformation toward a linear regression quantile
    Mu, Yunming
    He, Xuming
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 269 - 279
  • [9] Analyzing transformation-based simulation metamodels
    Irizarry, MDL
    Kuhl, ME
    Lada, EK
    Subramanian, S
    Wilson, JR
    [J]. PROCEEDINGS OF THE 2000 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2000, : 773 - 781
  • [10] The complexity of transformation-based join enumeration
    Pellenkoft, A
    Galindo-Legaria, CA
    Kersten, M
    [J]. PROCEEDINGS OF THE TWENTY-THIRD INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES, 1997, : 306 - 315