The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway

被引:154
|
作者
Gu, Huijie [1 ]
Guo, Fangfang [1 ]
Zhou, Xiao [3 ]
Gong, Lunli [1 ]
Zhang, Yun [1 ]
Zhai, Wanyin [2 ]
Chen, Lei [2 ]
Cen, Lian [1 ]
Yin, Shuo [1 ]
Chang, Jiang [2 ]
Cui, Lei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Dept Plast & Reconstruct Surg, Shanghai Peoples Hosp 9, Shanghai 200011, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Hunan Prov Tumor Hosp, Dept Plast Surg, Changsha 410013, Hunan, Peoples R China
关键词
Akermanite; Adipose-derived stem cells; Ions; Osteogenesis; Bone tissue engineering; MARK; BIOACTIVE GLASS DISSOLUTION; CALCIUM-SENSING RECEPTOR; IN-VITRO; PROLIFERATION; TISSUE; OSTEOBLASTS; KINASE; MINERALIZATION; BIOCERAMICS; EXPRESSION;
D O I
10.1016/j.biomaterials.2011.06.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Our previous study indicates that akermanite, a type of Ca-, Mg-, Si-containing bioceramic, can promote the osteogenic differentiation of hASCs. To elucidate the underlying mechanism, we investigated the effect of the extract from akermanite, on proliferation and osteogenic differentiation of hASCs. The original extract was obtained at 200 mg akermanite/ml LG-DMEM and further diluted with LG-DMEM. The final extracts were denoted as 1/2, 1/4, 1/8, 1/16, and 1/32 extracts based on the concentrations of the original extract. The LDH assay and live/dead stain were used to reveal the cytotoxicity of the different extracts on hASCs, while the DNA assay was carried out to quantitatively evaluate the proliferation of cells after being cultured with the extracts for 1, 3 and 7 days. Flow cytometry for cell cycle analysis was carried out on cells cultured in two media (GM and 1/2 extract) in order to further analyze the effect of the extract on cell proliferation behaviors. Osteogenic differentiation of hASCs cultured in the extracts was detected by ALP expression and calcium deposition, and further confirmed by real-time PCR analysis. It was shown that Ca. Mg and Si ions in the extract could suppress the LDH release and proliferation of hASCs, whereas promote their osteogenic differentiation. Such effects were concentration-dependent with the 1/4 extract (Ca 2.36 mM, Mg 1.11 mM, Si 1.03 mM) being the optimum in promoting the osteogenic differentiation of hASCs. An immediate increase in ERK was observed in cells cultured in the 1/4 extract and such osteogenic differentiation of hASCs promoted by released ions could be blocked by MEK1-specific inhibitor, PD98059. Briefly, Ca, Mg and Si ions extracted from akermanite in the concentrations of 2.36, 1.11, 1.03 mM, respectively, could facilitate the osteogenic differentiation of hASCs via an ERK pathway, and suppress the proliferation of hASCs without significant cytotoxicity. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7023 / 7033
页数:11
相关论文
共 50 条
  • [31] Study of osteogenic differentiation of human adipose-derived stem cells (HASCs) on bacterial cellulose
    Zang, Shanshan
    Zhuo, Qi
    Chang, Xiao
    Qiu, Guixing
    Wu, Zhihong
    Yang, Guang
    CARBOHYDRATE POLYMERS, 2014, 104 : 158 - 165
  • [32] Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells
    Zhang, Chunli
    Yu, Lidong
    Liu, Songjian
    Wang, Yuli
    PLOS ONE, 2017, 12 (10):
  • [33] Human osteogenic protein-1 induces osteogenic differentiation of adipose-derived stem cells harvested from mice
    Al-Salleeh, Fahd
    Beatty, Mark W.
    Reinhardt, Richard A.
    Petro, Thomas M.
    Crouch, Larry
    ARCHIVES OF ORAL BIOLOGY, 2008, 53 (10) : 928 - 936
  • [34] Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells
    Zhu, Yumin
    Wu, Yaping
    Cheng, Jie
    Wang, Qiong
    Li, Zhongwu
    Wang, Yanling
    Wang, Dongmiao
    Wang, Hua
    Zhang, Weibing
    Ye, Jinhai
    Jiang, Hongbing
    Wang, Lin
    STEM CELL RESEARCH & THERAPY, 2018, 9
  • [35] Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells
    Yumin Zhu
    Yaping Wu
    Jie Cheng
    Qiong Wang
    Zhongwu Li
    Yanling Wang
    Dongmiao Wang
    Hua Wang
    Weibing Zhang
    Jinhai Ye
    Hongbing Jiang
    Lin Wang
    Stem Cell Research & Therapy, 9
  • [36] Effects of Mechanical Stimulation on Differentiation of Human Adipose-Derived Stem Cells.
    Megerle, Kai
    Cole, Whitney
    Mahaffey, Ian
    Leucht, Philipp
    Chang, James
    Castillo, Alesha
    JOURNAL OF BONE AND MINERAL RESEARCH, 2014, 29 : S397 - S397
  • [37] Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells
    Mohamad-Fauzi, Nuradilla
    Shaw, Claire
    Foutouhi, Soraya H.
    Hess, Matthias
    Kong, Nguyet
    Kol, Amir
    Storey, Dylan Bobby
    Desai, Prerak T.
    Shah, Jigna
    Borjesson, Dori
    Murray, James D.
    Weimer, Bart C.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [38] Review of the Pathways Involved in the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Asserson, Derek B.
    Orbay, Hakan
    Sahar, David E.
    JOURNAL OF CRANIOFACIAL SURGERY, 2019, 30 (03) : 703 - 708
  • [39] Osteogenic differentiation of adipose-derived stem cells on dihydroartemisinin electrospun nanofibers
    Shabestani N.
    Mousazadeh H.
    Shayegh F.
    Gholami S.
    Mota A.
    Zarghami N.
    Journal of Biological Engineering, 16 (1)
  • [40] Effect of Eucomis autumnalis on the Osteogenic Differentiation of Adipose-Derived Stem Cells
    Mkhumbeni, Nolutho
    Pillay, Michael
    Mtunzi, Fanyana
    Motaung, Keolebogile Shirley Caroline
    TISSUE ENGINEERING PART A, 2022, 28 (3-4) : 136 - 149