Spin Transport in Ferromagnet-InSb Nanowire Quantum Devices

被引:27
|
作者
Yang, Zedong [1 ]
Heischmidt, Brett [1 ]
Gazibegovic, Sasa [2 ]
Badawy, Ghada [2 ]
Car, Diana [2 ]
Crowell, Paul A. [1 ]
Bakkers, Erik P. A. M. [2 ]
Pribiag, Vlad S. [1 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Eindhoven Univ Technol, NL-5600 Eindhoven, North Brabant, Netherlands
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
InSb nanowire; semiconductor-ferromagnet quantum device; 1D ballistic spin transport; helical gap; ELECTRIC-FIELD CONTROL; MAJORANA FERMIONS; SUPERCONDUCTOR; CONDUCTANCE; MAGNETORESISTANCE; SEMICONDUCTORS; INTERFERENCE; POLARIZATION; SIGNATURES; EPITAXY;
D O I
10.1021/acs.nanolett.9b05331
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Signatures of Majorana zero modes (MZMs) have been observed in semiconductor nanowires (NWs) with a strong spin- orbital interaction (SOI) with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this platform requires eliminating spin degeneracy by applying a magnetic field. However, the field can adversely impact the induced superconductivity and places geometric restrictions on the device. These challenges could be circumvented by integrating magnetic elements with the NWs. Here, we report the first experimental investigation of spin transport across InSb NWs with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and reveals a regime where the device acts as a spin filter. These results open an avenue toward developing MZM devices with spin degeneracy lifted locally without external fields. They could also enable spin-based devices that leverage spin-orbital states in quantum wires.
引用
收藏
页码:3232 / 3239
页数:8
相关论文
共 50 条
  • [1] Ballistic transport and quantum interference in InSb nanowire devices
    Li, Sen
    Huang, Guang-Yao
    Guo, Jing-Kun
    Kang, Ning
    Caroff, Philippe
    Xu, Hong-Qi
    CHINESE PHYSICS B, 2017, 26 (02)
  • [2] Ballistic transport and quantum interference in InSb nanowire devices
    李森
    黄光耀
    郭景琨
    康宁
    Philippe Caroff
    徐洪起
    Chinese Physics B, 2017, (02) : 439 - 444
  • [3] Ultrafast Spin Initialization in a Gated InSb Nanowire Quantum Dot
    Bednarek, S.
    Pawlowski, J.
    Gorski, M.
    Skowron, G.
    PHYSICAL REVIEW APPLIED, 2019, 11 (03):
  • [4] Quantum transport in InSb quantum well devices: progress and perspective
    Lei, Zijin
    Cheah, Erik
    Schott, Rudiger
    Lehner, Christian A.
    Zeitler, Uli
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (38)
  • [5] Ballistic spin transport and spin interference in ferromagnet/InAs(2DES)/ferromagnet devices
    Matsuyama, T
    Hu, CM
    Grundler, D
    Meier, G
    Merkt, U
    PHYSICAL REVIEW B, 2002, 65 (15) : 1 - 13
  • [6] Properties of spin transport of double quantum rings with structures of ferromagnet/semiconductor/ferromagnet
    Du Jian
    Li Chun-Guang
    Qin Fang
    ACTA PHYSICA SINICA, 2009, 58 (05) : 3448 - 3455
  • [7] Spin-polarized transport in ferromagnet/Rashba quantum dot/ferromagnet system
    Wang, Da-Kun
    Cheng, Shu-Guang
    PHYSICS LETTERS A, 2007, 365 (03) : 235 - 239
  • [8] Electrical detection of spin transport in lateral ferromagnet–semiconductor devices
    Xiaohua Lou
    Christoph Adelmann
    Scott A. Crooker
    Eric S. Garlid
    Jianjie Zhang
    K. S. Madhukar Reddy
    Soren D. Flexner
    Chris J. Palmstrøm
    Paul A. Crowell
    Nature Physics, 2007, 3 : 197 - 202
  • [9] InSb Nanowire Field-Effect Transistors and Quantum-Dot Devices
    Nilsson, H. A.
    Deng, M. T.
    Caroff, P.
    Thelander, C.
    Samuelson, L.
    Wernersson, L. -E.
    Xu, H. Q.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (04) : 907 - 914
  • [10] Next steps of quantum transport in Majorana nanowire devices
    Zhang, Hao
    Liu, Dong E.
    Wimmer, Michael
    Kouwenhoven, Leo P.
    NATURE COMMUNICATIONS, 2019, 10 (1)