Estimation of barley yield from Sentinel-1 and sentinel-2 imagery and climatic variables

被引:1
|
作者
Iranzo, Cristian [1 ]
Montorio, Raquel [1 ,2 ]
Garcia-Martin, Alberto [2 ,3 ]
机构
[1] Univ Zaragoza, Dept Geog & Ordenac Terr, Zaragoza, Spain
[2] Univ Zaragoza, Grp GEOFOREST IUCA, Zaragoza, Spain
[3] Ctr Univ Def Zaragoza, Acad Gen Mil, Zaragoza, Spain
来源
REVISTA DE TELEDETECCION | 2022年 / 59期
关键词
agriculture; vegetation indices; crop calendar; multiple regression; Google Earth Engine; 6S;
D O I
10.4995/raet.2022.15099
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [31] Integrating the Sentinel-1, Sentinel-2 and topographic data into soybean yield modelling using machine learning
    Amankulova, Khilola
    Farmonov, Nizom
    Omonov, Khasan
    Abdurakhimova, Mokhigul
    Mucsi, Laszlo
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 4052 - 4066
  • [32] High-resolution population maps derived from Sentinel-1 and Sentinel-2
    Metzger, Nando
    Daudt, Rodrigo Caye
    Tuia, Devis
    Schindler, Konrad
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 314
  • [33] GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA
    Tavus, Beste
    Kocaman, Sultan
    [J]. 39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 601 - 607
  • [34] Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe
    Tarpanelli, Angelica
    Mondini, Alessandro C.
    Camici, Stefania
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2022, 22 (08) : 2473 - 2489
  • [35] FIELD SCALE SOIL MOISTURE FROM TIME SERIES OF SENTINEL-1 & SENTINEL-2
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Palmisano, Davide
    D'Addabbo, Annarita
    Lovergine, Francesco
    [J]. 2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 176 - 179
  • [36] Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data
    Nielsen, Allan A.
    Larsen, Rasmus
    [J]. IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 147 - 158
  • [37] Application of Sentinel-1 and Sentinel-2 data to conduct reconnaissance analyses
    Jenerowicz, Agnieszka
    Orych, Agata
    Siok, Katarzyna
    Smiarowski, Michal
    [J]. ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160
  • [38] SENTINEL-1 & SENTINEL-2 FOR SOIL MOISTURE RETRIEVAL AT FIELD SCALE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Peng, J.
    Wegmuller, U.
    Cartus, O.
    Davidson, M. W. J.
    Kim, S.
    Johnson, J.
    Walker, J.
    Wu, X.
    Pauwels, V. R. N.
    McNairn, H.
    Caldwell, T.
    Cosh, M.
    Jackson, T.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6143 - 6146
  • [39] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [40] Using Sentinel-1 and Sentinel-2 imagery for estimating cotton crop coefficient, height, and Leaf Area Index
    Kaplan, Gregoriy
    Fine, Lior
    Lukyanov, Victor
    Malachy, Nitzan
    Tanny, Josef
    Rozenstein, Offer
    [J]. AGRICULTURAL WATER MANAGEMENT, 2023, 276