Bootstrap variants of the Akaike information criterion for mixed model selection

被引:48
|
作者
Shang, Junfeng [1 ]
Cavanaugh, Joseph E. [2 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
AIC; Kullback-Leibler information; model selection criteria;
D O I
10.1016/j.csda.2007.06.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two bootstrap-corrected variants of the Akaike information criterion are proposed for the purpose of small-sample mixed model selection. These two variants are asymptotically equivalent, and provide asymptotically unbiased estimators of the expected Kullback-Leibler discrepancy between the true model and a fitted candidate model. The performance of the criteria is investigated in a simulation study where the random effects and the errors for the true model are generated from a Gaussian distribution. The parametric bootstrap is employed. The simulation results suggest that both criteria provide effective tools for choosing a mixed model with an appropriate mean and covariance structure. A theoretical asymptotic justification for the variants is presented in the Appendix. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2004 / 2021
页数:18
相关论文
共 50 条
  • [22] A note on bootstrap model selection criterion
    Chung, HY
    Lee, KW
    Koo, JY
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 26 (01) : 35 - 41
  • [23] The Akaike Information Criterion Will Not Choose the No Common Mechanism Model
    Holder, Mark T.
    Lewis, Paul O.
    Swofford, David L.
    [J]. SYSTEMATIC BIOLOGY, 2010, 59 (04) : 477 - 485
  • [25] Properties of the Akaike information criterion
    Awad, AM
    [J]. MICROELECTRONICS RELIABILITY, 1996, 36 (04) : 457 - 464
  • [26] Optimum probability model selection using akaike's information criterion for low power applications
    Chandramouli, R
    Srikantam, VK
    [J]. ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 467 - 470
  • [27] An optimization-based algorithm for model selection using an approximation of Akaike's Information Criterion
    Carvajal, Rodrigo
    Urrutia, Gabriel
    Aguero, Juan C.
    [J]. 2016 AUSTRALIAN CONTROL CONFERENCE (AUCC), 2016, : 217 - 220
  • [28] Model Selection Using Modified Akaike's Information Criterion: An Application to Maternal Morbidity Data
    Latif, A. H. M. Mahbub
    Hossain, M. Zakir
    Islam, M. Ataharul
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (02) : 175 - 184
  • [29] Mixed Integer Nonlinear Program for Minimization of Akaike's Information Criterion
    Kimura, Keiji
    Waki, Hayato
    [J]. MATHEMATICAL SOFTWARE, ICMS 2016, 2016, 9725 : 292 - 300
  • [30] Practical advice on variable selection and reporting using Akaike information criterion
    Sutherland, Chris
    Hare, Darragh
    Johnson, Paul J.
    Linden, Daniel W.
    Montgomery, Robert A.
    Droge, Egil
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2023, 290 (2007)