AIC;
Kullback-Leibler information;
model selection criteria;
D O I:
10.1016/j.csda.2007.06.019
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Two bootstrap-corrected variants of the Akaike information criterion are proposed for the purpose of small-sample mixed model selection. These two variants are asymptotically equivalent, and provide asymptotically unbiased estimators of the expected Kullback-Leibler discrepancy between the true model and a fitted candidate model. The performance of the criteria is investigated in a simulation study where the random effects and the errors for the true model are generated from a Gaussian distribution. The parametric bootstrap is employed. The simulation results suggest that both criteria provide effective tools for choosing a mixed model with an appropriate mean and covariance structure. A theoretical asymptotic justification for the variants is presented in the Appendix. (C) 2007 Elsevier B.V. All rights reserved.
机构:
Univ Illinois, Dept Phys, Urbana, IL 61801 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA
Tan, M. Y. J.
Biswas, Rahul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Phys, Urbana, IL 61801 USA
Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USAUniv Illinois, Dept Phys, Urbana, IL 61801 USA
机构:
Colorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USAColorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USA
Anderson, DR
Burnham, KP
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USAColorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USA
Burnham, KP
White, GC
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USAColorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USA