Metal-Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation

被引:178
|
作者
Ye, Yingxiang [1 ]
Xian, Shikai [2 ,3 ]
Cui, Hui [4 ]
Tan, Kui [5 ]
Gong, Lingshan [1 ]
Liang, Bin [1 ]
Pham, Tony [6 ]
Pandey, Haardik [7 ,8 ]
Krishna, Rajamani [9 ]
Lan, Pui Ching [1 ]
Forrest, Katherine A. [6 ]
Space, Brian [10 ]
Thonhauser, Timo [7 ,8 ]
Li, Jing [2 ]
Ma, Shengqian [1 ]
机构
[1] Univ North Texas, Dept Chem, Denton, TX 76201 USA
[2] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA
[3] Shenzhen Polytech, Hoffmann Inst Adv Mat, Shenzhen 518055, Guangdong, Peoples R China
[4] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA
[5] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
[6] Univ S Florida, Dept Chem, Tampa, FL 33620 USA
[7] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA
[8] Wake Forest Univ, Ctr Funct Mat, Winston Salem, NC 27109 USA
[9] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands
[10] North Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; ETHYLENE PURIFICATION; ADSORPTION; C2H2/CO2; COMPLEXES; PRESSURE; CAPACITY; CAPTURE; BINDING; DESIGN;
D O I
10.1021/jacs.1c10620
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal-organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm(3) g(-1), or 213 cm(3) cm(-3)) but much less CO2 uptake (90 cm(3) g(-1)) under ambient conditions. The C(2)H(2 )adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm(3) g(-1) for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Delta(qbreak) = 5.02 mol/kg) and C(2)H(2 )productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host-guest multiple hydrogen-bonding interaction between the nanotrap and C(2)H(2 )is the key factor for achieving the extraordinary acetylene storage capacity and superior C2 H-2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.
引用
收藏
页码:1681 / 1689
页数:9
相关论文
共 50 条
  • [31] Hydrogen storage in Pd nanocrystals covered with a metal-organic framework
    Li, Guangqin
    Kobayashi, Hirokazu
    Taylor, Jared M.
    Ikeda, Ryuichi
    Kubota, Yoshiki
    Kato, Kenichi
    Takata, Masaki
    Yamamoto, Tomokazu
    Toh, Shoichi
    Matsumura, Syo
    Kitagawa, Hiroshi
    NATURE MATERIALS, 2014, 13 (08) : 802 - 806
  • [32] Simulation of hydrogen storage tank packed with metal-organic framework
    Xiao, Jinsheng
    Hu, Min
    Benard, Pierre
    Chahine, Richard
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 13000 - 13010
  • [33] Hydrogen storage in Pd nanocrystals covered with a metal-organic framework
    Li G.
    Kobayashi H.
    Taylor J.M.
    Ikeda R.
    Kubota Y.
    Kato K.
    Takata M.
    Yamamoto T.
    Toh S.
    Matsumura S.
    Kitagawa H.
    Kobayashi, H. (hkobayashi@kuchem.kyoto-u.ac.jp), 1600, Nature Publishing Group (13): : 802 - 806
  • [34] Improving the hydrogen storage properties of metal-organic framework by functionalization
    Xia, Liangzhi
    Liu, Qing
    Wang, Fengling
    Lu, Jinming
    JOURNAL OF MOLECULAR MODELING, 2016, 22 (10)
  • [35] Improving the hydrogen storage properties of metal-organic framework by functionalization
    Liangzhi Xia
    Qing Liu
    Fengling Wang
    Jinming Lu
    Journal of Molecular Modeling, 2016, 22
  • [36] A highly porous phosphonocarboxylate metal-organic framework for hydrogen storage
    Li, Lan
    Xia, Sa-Sa
    Hu, Xiao-Jing
    Li, Xin-Ni
    Wang, Xusheng
    Chen, Zhi
    STRUCTURAL CHEMISTRY, 2024, 35 (05) : 1595 - 1600
  • [37] Percolative metal-organic framework/carbon composites for hydrogen storage
    Xie, Shuqian
    Hwang, Jiann-Yang
    Sun, Xiang
    Shi, Shangzhao
    Zhang, Zheng
    Peng, Zhiwei
    Zhai, Yuchun
    JOURNAL OF POWER SOURCES, 2014, 253 : 132 - 137
  • [38] Metal-Organic Framework-Based NF3 Nanotrap for the Separation of NF3 and CF4
    Wang, Changhong (chwang@hebtu.edu.cn); Niu, Zheng (zhengniu@suda.edu.cn), 2025, 17 (01): : 2349 - 2354
  • [39] Crystalline hydrogen bonding of water molecules confined in a metal-organic framework
    Bae, Jinhee
    Park, Sun Ho
    Moon, Dohyun
    Jeong, Nak Cheon
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [40] Crystalline hydrogen bonding of water molecules confined in a metal-organic framework
    Jinhee Bae
    Sun Ho Park
    Dohyun Moon
    Nak Cheon Jeong
    Communications Chemistry, 5