A Biomimetic Tunnel FET-Based Spiking Neuron for Energy-Efficient Neuromorphic Computing With Reduced Hardware Cost

被引:5
|
作者
Luo, Jin [1 ]
Chen, Cheng [1 ]
Huang, Qianqian [1 ,2 ,3 ]
Huang, Ru [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Integrated Circuits, Key Lab Microelect Devices & Circuits MOE, Beijing 100871, Peoples R China
[2] Peking Univ, Beijing Lab Future IC Technol & Sci, Beijing 100871, Peoples R China
[3] Chinese Inst Brain Res CIBR, Beijing 102206, Peoples R China
关键词
Biomimetic spiking neuron; neuromorphic computing; relative refractory period; tunnel FET (TFET);
D O I
10.1109/TED.2021.3131633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, utilizing the unique features of conventional Si-based tunnel FET (TFET), a TFET-based leaky integrate-and-fire (LIF) neuron with higher energy efficiency and reduced hardware cost is proposed. Compared with traditional CMOS-based LIF neuron, the proposed TFET-based LIF neuron can produce an additional bio-plausible after-hyperpolarization (AHP) behavior and relative refractory period without extra hardware cost by exploiting the features of large Miller effect and forward p-i-n current in TFET. Moreover, the typical ambipolar effect and superlinear onset behaviors in conventional Si-based TFET enable the lower hardware cost and lower energy consumption (similar to 10x reduction) for TFET-based neuron. Furthermore, the proposed TFET neuron-based spiking neural network (SNN) is demonstrated for pattern recognition tasks, showing its advantage of significant energy efficiency. This work provides a promising highly integrated and energy-efficient solution for the hardware implementation of spiking neuron for neuromorphic computing.
引用
收藏
页码:882 / 886
页数:5
相关论文
共 50 条
  • [11] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    Chen, Ya-Bo
    Yang, Xiao-Kuo
    Yan, Tao
    Wei, Bo
    Cui, Huan-Qing
    Li, Cheng
    Liu, Jia-Hao
    Song, Ming-Xu
    Cai, Li
    [J]. CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [12] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    [J]. Chinese Physics Letters., 2020, 37 (07) - 178
  • [13] An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs
    Pal, Arnab
    Chai, Zichun
    Jiang, Junkai
    Cao, Wei
    Davies, Mike
    De, Vivek
    Banerjee, Kaustav
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [14] Single SiGe Transistor Based Energy-Efficient Leaky Integrate-and-Fire Neuron for Neuromorphic Computing
    Khanday, Mudasir A.
    Khanday, Farooq A.
    Bashir, Faisal
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (06) : 6997 - 7007
  • [15] An Adiabatic Capacitive Artificial Neuron With RRAM-Based Threshold Detection for Energy-Efficient Neuromorphic Computing
    Maheshwari, Sachin
    Serb, Alexander
    Papavassiliou, Christos
    Prodromakis, Themistoklis
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (09) : 3512 - 3525
  • [16] Single SiGe Transistor Based Energy-Efficient Leaky Integrate-and-Fire Neuron for Neuromorphic Computing
    Mudasir A. Khanday
    Farooq A. Khanday
    Faisal Bashir
    [J]. Neural Processing Letters, 2023, 55 : 6997 - 7007
  • [17] Comparative Analysis and Energy-Efficient Write Scheme of Ferroelectric FET-Based Memory Cells
    Ko, Dong Han
    Oh, Tae Woo
    Lim, Sehee
    Kim, Se Keon
    Jung, Seong-Ook
    [J]. IEEE ACCESS, 2021, 9 : 127895 - 127905
  • [18] Hardware Accelerators for Spiking Neural Networks for Energy-Efficient Edge Computing (Extended Abstract)
    Moitra, Abhishek
    Yin, Ruokai
    Panda, Priyadarshini
    [J]. PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 137 - 138
  • [19] Towards Energy-Efficient Computing Hardware Based on Memristive Nanodevices
    Huang, Yi
    Ravichandran, Vignesh
    Zhao, Wuyu
    Xia, Qiangfei
    [J]. IEEE NANOTECHNOLOGY MAGAZINE, 2023, 17 (05) : 30 - 38
  • [20] Robust and energy-efficient carbon nanotube FET-based MVL gates: A novel design approach
    Sharifi, Fazel
    Moaiyeri, Mohammad Hossein
    Navi, Keivan
    Bagherzadeh, Nader
    [J]. MICROELECTRONICS JOURNAL, 2015, 46 (12) : 1333 - 1342