Subspace clustering by simultaneously feature selection and similarity learning

被引:25
|
作者
Zhong, Guo [1 ]
Pun, Chi-Man [1 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
关键词
Subspace clustering; Feature selection; Graph learning; Similarity learning; Affinity matrix; LOW-RANK REPRESENTATION; MATRIX FACTORIZATION; FACE RECOGNITION; SPARSE; ALGORITHM;
D O I
10.1016/j.knosys.2020.105512
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning a reliable affinity matrix is the key to achieving good performance for graph-based clustering methods. However, most of the current work usually directly constructs the affinity matrix from the raw data. It may seriously affect the clustering performance since the original data usually contain noises, even redundant features. On the other hand, although integrating manifold regularization into the framework of clustering algorithms can improve clustering results, some entries of the pre-computed affinity matrix on the original data may not reflect the true similarities between data points. To address the above issues, we propose a novel subspace clustering method to simultaneously learn the similarities between data points and conduct feature selection in a unified optimization framework. Specifically, we learn a high-quality graph under the guidance of a low-dimensional space of the original data such that the obtained affinity matrix can reflect the true similarities between data points as much as possible. A new algorithm based on augmented Lagrangian multiplier is designed to find the optimal solution to the problem effectively. Extensive experiments are conducted on benchmark datasets to demonstrate that our proposed method performs better against the state-of-the-art clustering methods. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Feature Selection for Local Learning Based Clustering
    Zeng, Hong
    Cheung, Yiu-ming
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 414 - 425
  • [22] Enhancing Clustering Performance: A Fuzzy Subspace Clustering Method with Local Correlation and Sparse Feature Selection
    Yan, Fei
    Wang, Xiaodong
    Hong, Longfu
    Journal of Network Intelligence, 2024, 9 (01): : 427 - 442
  • [23] Unsupervised feature selection by combining subspace learning with feature self-representation
    Li, Yangding
    Lei, Cong
    Fang, Yue
    Hu, Rongyao
    Li, Yonggang
    Zhang, Shichao
    PATTERN RECOGNITION LETTERS, 2018, 109 : 35 - 43
  • [24] From Joint Feature Selection and Self-Representation Learning to Robust Multi-view Subspace Clustering
    Yan, Hui
    Liu, Siyu
    Yu, Philip S.
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1414 - 1419
  • [25] Local discriminative based sparse subspace learning for feature selection
    Shang, Ronghua
    Meng, Yang
    Wang, Wenbing
    Shang, Fanhua
    Jiao, Licheng
    PATTERN RECOGNITION, 2019, 92 : 219 - 230
  • [26] Multi-label Feature Selection with Adaptive Subspace Learning
    Yuan, Dongjie
    Yuan, Bin
    Zhong, Yan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2024, 2024, 14884 : 148 - 160
  • [27] UNSUPERVISED FEATURE SELECTION BY NONNEGATIVE SPARSITY ADAPTIVE SUBSPACE LEARNING
    Zhou, Nan
    Cheng, Hong
    Zheng, Ya-Li
    He, Liang-Tian
    Pedrycz, Witold
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2016, : 18 - 24
  • [28] Robust unsupervised feature selection by nonnegative sparse subspace learning
    Zheng, Wei
    Yan, Hui
    Yang, Jian
    NEUROCOMPUTING, 2019, 334 : 156 - 171
  • [29] A new unsupervised feature selection algorithm using similarity-based feature clustering
    Zhu, Xiaoyan
    Wang, Yu
    Li, Yingbin
    Tan, Yonghui
    Wang, Guangtao
    Song, Qinbao
    COMPUTATIONAL INTELLIGENCE, 2019, 35 (01) : 2 - 22
  • [30] Robust Unsupervised Feature Selection by Nonnegative Sparse Subspace Learning
    Zheng, Wei
    Yan, Hui
    Yang, Jian
    Yang, Jingyu
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3615 - 3620