Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments

被引:62
|
作者
Ziman, Mario [1 ,2 ]
机构
[1] Slovak Acad Sci, Res Ctr Quantum Informat, Bratislava 84511, Slovakia
[2] Masaryk Univ, Fac Informat, Brno 60200, Czech Republic
来源
PHYSICAL REVIEW A | 2008年 / 77卷 / 06期
关键词
D O I
10.1103/PhysRevA.77.062112
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a mathematical framework for the description of measurements of quantum processes. Using this framework, process estimation problems can be treated in a similar way as state estimation problems, only replacing the concept of positive-operator-valued measure (POVM) by the concept of process POVM (PPOVM). In particular, we will show that any measurement of qudit channels can be described by a collection of effects (positive operators) defined on a two-qudit system. However, the effects forming a PPOVM are not normalized in the usual sense. We will demonstrate the use of this formalism in discrimination problems by showing that perfect channel discrimination is equivalent to a specific unambiguous state discrimination.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] MATHEMATICAL DESCRIPTION OF THE GRINDING PROCESS
    Zubarev, Yury M.
    Priemishev, Alexander V.
    Aleinikova, Margarita A.
    MARINE INTELLECTUAL TECHNOLOGIES, 2019, 4 (01): : 197 - 204
  • [42] MATHEMATICAL DESCRIPTION OF PLATFORMING PROCESS
    BELTSOV, BA
    INTERNATIONAL CHEMICAL ENGINEERING, 1967, 7 (04): : 680 - &
  • [43] A Positive Operator-Valued Measure for an Iterated Function System
    Davison, Trubee
    ACTA APPLICANDAE MATHEMATICAE, 2018, 157 (01) : 1 - 24
  • [44] A Positive Operator-Valued Measure for an Iterated Function System
    Trubee Davison
    Acta Applicandae Mathematicae, 2018, 157 : 1 - 24
  • [45] On the Extension of a Family of Projections to a Positive Operator-Valued Measure
    A. O. Alekseev
    G. G. Amosov
    Vestnik St. Petersburg University, Mathematics, 2023, 56 : 1 - 8
  • [46] On the Extension of a Family of Projections to a Positive Operator-Valued Measure
    Alekseev, A. O.
    Amosov, G. G.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2023, 56 (01) : 1 - 8
  • [47] Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality
    Barrett, J
    PHYSICAL REVIEW A, 2002, 65 (04): : 4
  • [48] Mathematical description of a batch fermentation process
    Sipos, Anca
    Meyer, Xuan M.
    Strehaiano, Pierre
    REVISTA DE CHIMIE, 2007, 58 (08): : 838 - 843
  • [49] Mathematical description of the jet grinding process
    Dorokhov, I.N.
    Arutyunov, S.Yu.
    Eskin, D.I.
    Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 1993, 27 (05): : 514 - 517
  • [50] Experimentally feasible semi-device-independent certification of four-outcome positive-operator-valued measurements
    Mironowicz, Piotr
    Pawlowski, Marcin
    PHYSICAL REVIEW A, 2019, 100 (03)