On single-file and less dense processes

被引:21
|
作者
Flomenbom, O. [1 ]
Taloni, A. [2 ,3 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
关键词
D O I
10.1209/0295-5075/83/20004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The diffusion process of N hard rods in a 1D interval of length L(->infinity) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particle's mean absolute displacement reads, <vertical bar r vertical bar >approximate to <vertical bar r vertical bar > free/n(mu), where <vertical bar r vertical bar > free is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+alpha), where alpha is associated with the particles' density law of the system, rho approximate to rho 0L(-alpha), 0 <=alpha <= 1. The scaling law for <vertical bar r vertical bar > leads to, <vertical bar r vertical bar >approximate to rho 0((alpha-1)/2)(<vertical bar r vertical bar > free)((1+alpha)/2), an equation that predicts a smooth interpolation between single-file diffusion and free-particle diffusion depending on the particles' density law, and holds for any underlying dynamics. In particular, < r(2)>approximate to t(1+alpha/2) for normal diffusion, with a Gaussian PDF in space for any value of alpha (deduced by a complementary analysis), and, < r2 >approximate to t(beta(1+alpha)/2) , for anomalous diffusion in which the system's particles all have the same power-law waiting time PDF for individual events, psi approximate to t(-1-beta), 0 <beta < 1. Our analysis shows that the scaling < r(2)>approximate to t(1/2) in a "standard" single file is a direct result of the fixed particles' density condition imposed on the system, alpha=0. Copyright (C) EPLA, 2008.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Large Deviations in Single-File Diffusion
    Krapivsky, P. L.
    Mallick, Kirone
    Sadhu, Tridib
    PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [22] Tagged Particle in Single-File Diffusion
    Krapivsky, P. L.
    Mallick, Kirone
    Sadhu, Tridib
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (04) : 885 - 925
  • [23] SINGLE-FILE DIFFUSION OF UNCHARGED PARTICLES
    AITYAN, SK
    BIOLOGICHESKIE MEMBRANY, 1984, 1 (05): : 524 - 530
  • [24] Duality relations in single-file diffusion
    Rizkallah, Pierre
    Grabsch, Aurelien
    Illien, Pierre
    Benichou, Olivier
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (01):
  • [25] Fluctuation theory of single-file diffusion
    Felderhof, B. U.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (06):
  • [26] Tagged Particle in Single-File Diffusion
    P. L. Krapivsky
    Kirone Mallick
    Tridib Sadhu
    Journal of Statistical Physics, 2015, 160 : 885 - 925
  • [27] Single-file diffusion on a periodic substrate
    Taloni, A
    Marchesoni, F
    PHYSICAL REVIEW LETTERS, 2006, 96 (02)
  • [28] SINGLE-FILE DIFFUSION AND REACTION IN ZEOLITES
    KARGER, J
    PETZOLD, M
    PFEIFER, H
    ERNST, S
    WEITKAMP, J
    JOURNAL OF CATALYSIS, 1992, 136 (02) : 283 - 299
  • [29] Hyperpolarized NMR in Single-File Nanotubes
    Bowers, C. R.
    Cheng, C. -Y.
    Stamatatos, T. C.
    Christou, G.
    MAGNETIC RESONANCE IN POROUS MEDIA, 2011, 1330 : 43 - 46
  • [30] Langevin formulation for single-file diffusion
    Taloni, Alessandro
    Lomholt, Michael A.
    PHYSICAL REVIEW E, 2008, 78 (05):