On single-file and less dense processes

被引:21
|
作者
Flomenbom, O. [1 ]
Taloni, A. [2 ,3 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
关键词
D O I
10.1209/0295-5075/83/20004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The diffusion process of N hard rods in a 1D interval of length L(->infinity) is studied using scaling arguments and an asymptotic analysis of the exact N-particle probability density function (PDF). In the class of such systems, the universal scaling law of the tagged particle's mean absolute displacement reads, <vertical bar r vertical bar >approximate to <vertical bar r vertical bar > free/n(mu), where <vertical bar r vertical bar > free is the result for a free particle in the studied system and n is the number of particles in the covered length. The exponent mu is given by, mu=1/(1+alpha), where alpha is associated with the particles' density law of the system, rho approximate to rho 0L(-alpha), 0 <=alpha <= 1. The scaling law for <vertical bar r vertical bar > leads to, <vertical bar r vertical bar >approximate to rho 0((alpha-1)/2)(<vertical bar r vertical bar > free)((1+alpha)/2), an equation that predicts a smooth interpolation between single-file diffusion and free-particle diffusion depending on the particles' density law, and holds for any underlying dynamics. In particular, < r(2)>approximate to t(1+alpha/2) for normal diffusion, with a Gaussian PDF in space for any value of alpha (deduced by a complementary analysis), and, < r2 >approximate to t(beta(1+alpha)/2) , for anomalous diffusion in which the system's particles all have the same power-law waiting time PDF for individual events, psi approximate to t(-1-beta), 0 <beta < 1. Our analysis shows that the scaling < r(2)>approximate to t(1/2) in a "standard" single file is a direct result of the fixed particles' density condition imposed on the system, alpha=0. Copyright (C) EPLA, 2008.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Active Transport in Dense Diffusive Single-File Systems
    Illien, P.
    Benichou, O.
    Mejia-Monasterio, C.
    Oshanin, G.
    Voituriez, R.
    PHYSICAL REVIEW LETTERS, 2013, 111 (03)
  • [2] Asymmetric effect on single-file dense pedestrian flow
    Kuang, Hua
    Cai, Mei-Jing
    Li, Xing-Li
    Song, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (06):
  • [3] Dynamics of run-and-tumble particles in dense single-file systems
    Bertrand, Thibault
    Ilien, Pierre
    Benichou, Olivier
    Voiturie, Raphael
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [4] Large deviations of a tracer position in the dense and the dilute limits of single-file diffusion
    Rana, Jagannath
    Sadhu, Tridib
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [5] Single-file water in nanopores
    Koefinger, Juergen
    Hummer, Gerhard
    Dellago, Christoph
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) : 15403 - 15417
  • [6] THEORY OF SINGLE-FILE NOISE
    FREHLAND, E
    STEPHAN, W
    BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 553 (02) : 326 - 341
  • [7] Single-file diffusion in a box
    Lizana, L.
    Ambjoernsson, T.
    PHYSICAL REVIEW LETTERS, 2008, 100 (20)
  • [8] Single-file diffusion observation
    Phys Rev Lett, 15 (2762):
  • [9] Single-file diffusion observation
    Hahn, K
    Karger, J
    Kukla, V
    PHYSICAL REVIEW LETTERS, 1996, 76 (15) : 2762 - 2765
  • [10] SINGLE-FILE POTASSIUM IONS
    不详
    CHEMICAL & ENGINEERING NEWS, 2014, 92 (42) : 29 - 29